
PowerPC EABI
TEST SUITE (PEATS)

Functional Specification

Version 1.0

April 8, 1996

Applied Testing and Technology, Inc.

ApTest

ii PEATS Programmer’s Guide Version 1.0 Applied Testing and Technology, Inc.

 Copyright 1996 Applied Testing and Technology Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of
the copyright holder.

Applied Testing and Technology, Inc.
59 North Santa Cruz Avenue, Suite U
Los Gatos, CA 95030 USA

Voice: 408-399-1930
Fax: 408-399-1931

aptest@aptest.com

PowerPC is a trademark of IBM.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Limited.

Windows is a trademark of Microsoft Corporation.

X/Open is a trademark of X/Open Company Limited.

Release Date Area Modifications

1.0 April 8, 1996 Initial release

Applied Testing and Technology, Inc. Version 2.0 VTS960 Functional Specification iii

CONTENTS

CONTENTS

1 Overview 1
Document objective 1

Document scope 1
Associated references 1

2 Architecture 2
Overview of PEATS 2

TCL test logic 3
Analysis programs 3

C test programs 4
Installation and configuration tools and methods 4

General framework for static testing of EABI files 5
DejaGNU framework 5

Organization of directories 5
Use of trusted objects 5

Supplemental testing using run-time validation 6
Extensibility of PEATS 7

Adding test programs 7
Adding test variables 7

Testing other tools 7

3 Testing Logic 8
Framework 8

Testing steps 8
Testing choices 9

Exception handling 10

4 Coverage 11
What is tested 11
What is not tested 11

Methods used to obtain broad coverage 11
Checks on coverage 12

5 User Interface 13
Installation and configuration 13

Building Test Suite components 13
Editing configuration files 13

Runtest command line 14
Basic syntax 14

CONTENTS

iv VTS960 Functional Specification Version 2.0 Applied Testing and Technology, Inc.

Specifying the tools to be tested 15

Specifying the test cases to be used 15
Controlling the detail reporting level 15

Passing options to specific tools 16
Command line syntax and options for the analysis tools 16

C source program analyzer 16
Object File Verifier 17

Library File Verifier 19

6 PEATS Reports 21
DejaGnu reports 21

Summary logs 21

Detailed Logs 22
Reporting attribute usage based on semantic expectations 22

7 Execution Environment 25
UNIX 25
Windows 95 25

Target Hardware 25

8 Packaging 26

9 Documentation 27

A Assertions 28
OFVPPC Assertions 28

ELF Header 28

ELF Program Header 31
ELF “.rela*” Section 32

ELF Section Header Table 34
ELF Section Header Table - Special Sections 37

ELF ".strtab" Section 44
ELF ".symtab" Section 44

ELF ".tags" Section 47
".debug" Section 47

".debug_aranges" Section 60
DWARF 1 Location Descriptions 61

".debug_pubnames" Section 61
".line" Section 63

Linked Objects 64
lvppc Assertions 65

Applied Testing and Technology, Inc. Version 2.0 VTS960 Functional Specification v

CONTENTS

Run-time assertions 68

Run-time alignment assertions 68
Run-time call assertions 70

B Expectations Language 76
Statement subjects and modifiers 76

Definition subkind 77
Function forms 77

Kinds of types 77
Parameter kind 78

Reference kind 78
Storage classes for variables 78

Statement syntax 78
Source location 80

Type ordinal 81
Sample statements 81

C PEATS TESTS 85

CONTENTS

vi VTS960 Functional Specification Version 2.0 Applied Testing and Technology, Inc.

List of Figures

Figure 2-1 PEATS components 2
Figure 2-2 Host-target configuration for supplemental testing 6
Figure 3-1 Tool flow 9
Figure 6-1 Sample summary log 21
Figure 6-2 Sample detail log 22

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 1

1 Overview
Document objective

1 Overview

Document objective

This document describes PEATS, the PowerPC Embedded ABI (EABI) Validation Test
Suite.

Document scope

This document describes PEATS in terms of:

• architecture

• testing logic

• coverage

• user interface

• reports

• execution environment

• packaging

• documentation

• assertions

• expectations language

Associated references

• PowerPC Embedded Application Binary Interface, Version 1.0, Motorola, Inc.,
1/10/95.

• System V Application Binary Interface, PowerPC Processor Supplement, Draft,
Revision A, SunSoft, Part No. 802-3334-01, March 1995.

• System V Application Binary Interface, Novell, Inc., 1995.

• DWARF Debugging Information Format, Revision: 1.0.3, UNIX International
Programming Languages SIG, (July 31, 1992).

• The DejaGNU Testing Framework for DejaGNU Version 1.1, Cygnus Support,
Nov 1993.

• IEEE Std. 1003.3-1991 Standard for Test Methods for Measuring Conformance
to POSIX. Institute of Electrical and Electronic Engineers, Inc., 1991.

2 Architecture
Overview of PEATS

2 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

2 Architecture

Overview of PEATS

PEATS is a complete package for installing, configuring, and running a large series of
tests to validate compilers, linkers, and archivers for conformance to the EABI.

The deliverables include:

• installation and configuration aids

• logic to control test sequencing

• analysis programs that do the actual inspections and reporting on the operation
of the tools and their conformance to standards

• test programs used to exercise the tools for evaluation purposes.

The major components of PEATS are shown in the following figure.

Figure 2-1 PEATS components

Test
Programs
(C source and
PowerPC
Objects and
Libraries)

Test
 Scripts
(Tcl)

DejaGnu Test Harness

cparse C Source
Configuration Files
(tools.exp, plan.exp, ofv.ini)

 Analyzer

ofvppc Object
File Verifier

lvppc Archive
File Verifier

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 3

2 Architecture
Overview of PEATS

TCL test logic

The programs that contain the logic for running PEATS are written in the Tcl language.
These programs include logic for:

• checking configuration information

• running the tools to be tested

• iterating through a series of test programs and variations

• running analysis programs to validate the output from the tools

• reporting the results

As delivered, PEATS has four “test variables” each with two possible values, the
combinations of which create up to sixteen testable “variations” to be applied to every
test program. These variables and their values are:

• debugging with or without debugging information (e.g., -g)

• dialect ISO or K&R variants of the C language

• optimization with or without optimization (e.g., -O)

• order big-endian or little-endian target byte order.

The Tcl programs are designed to be flexible; they are indifferent to the number of C test
programs and to the exact definition of test variables and their values (i.e., indifferent to
the number or meaning of the test variations), both of which can be extended by the
PEATS user. The Tcl programs are also designed to make it easy to insert a new Tcl
module to perform tests on some other tool (other than a compiler, linker, or archiver).

Analysis programs

PEATS validates compilers, linkers, and archivers by checking the correctness of object
files generated by these tools. Checking is in terms of assertions of two types:

• Syntactic assertions are checks on the form and internal consistency of a single
relocatable object file, or a linked object file and the object files which were
input to the linker to produce the linked object file. Syntactic assertions do not
require reference to C source programs.

• Semantic assertions are checks of consistency between C source files and corre-
sponding object files.

PEATS includes the following programs (written in C) which are called by the Tcl
programs to examine the inputs and outputs of the tools under test for the purpose of
determining whether the tools conform to the applicable standards:

• source program analyzer (cparse) – analyzes a C source file and creates an
ASCII file of expectations as to what should appear in the corresponding object
file after compilation (semantic expectations)

2 Architecture
Overview of PEATS

4 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

• object file verifier (ofvppc) – analyzes ELF-DWARF object files to verify that
syntactic and semantic expectations have been met, and in the case of linked
files, that the input object files have been combined properly

• verifier for library archive files (lvppc) – analyzes archives to verify that syn-
tactic and semantic expectations have been met, and that the archive is properly
constructed from its component object files.

C test programs

C test programs are provided to exercise the tools being tested. The collection of test
programs includes:

• single-module single-focus tests, such as a program containing many local vari-
ables, a program defining many types, etc.

• multi-module programs to exercise linkage capabilities such as sharing of defini-
tions, external functions, and external variables

• a few programs that are intentionally quite large for the purpose of “stress test-
ing” the tools by presenting them with a large number of types, functions,
parameters, scopes, variables, etc.

Installation and configuration tools and methods

The PEATS distribution relies on the tar program in the UNIX environment (PKZIP
in the PC environment) to create required directories and to place program and data files
into their proper locations. The distribution includes pre-built executable files for some
commonly-used platforms (UNIX and Windows 95)and a make file to build or rebuild
needed executable files on those and other platforms.

The distribution includes three configuration files that need to be adapted to a user’s
particular environment. Two files, tools.exp and plan.exp , are used to specify:

• the operating system commands for ordinary operations such as file copy, file
move, etc.

• the names, standard options, and capabilities of the compiler, linker, and
archiver to be tested

• the command-line options for selecting particular variations of language dialect,
debugging information, optimization levels, and byte-ordering.

A third file, ofv.ini , conditions the object file verifier for the compiler and linker
under test.

Use of such configuration files makes PEATS adaptable to a variety of different
platforms without the need to change any of the delivered programs.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 5

2 Architecture
General framework for static testing of EABI files

General framework for static testing of EABI files

Testing is highly automated so that one can start a large series of unattended tests with a
single command. The major part of the testing is a static evaluation of the files produced
by the compiler, linker, archiver, or similar tool in response to a known set of inputs and
controls. In “Supplemental testing using run-time validation” on page 6 there is a
discussion of additional testing that relies on run-time checking rather than static
examination of program files.

DejaGNU framework

PEATS uses the DejaGNU test framework which was originally developed for testing
GNU tools such as the GNU C compiler. This framework manages the automatic
execution of a collection of tests and reports the results of those tests in summary and in
detail.

Use of DejaGNU as the test framework offers a variety of benefits:

• compliance with POSIX standard 1003.3

• a uniform command-line interface to the testing process

• flexibility and extensibility to facilitate the development of new test cases

• portability across native and cross-development platforms.

Organization of directories

During installation of PEATS, a directory tree is created for the purpose of organizing
the testing process. In the root directory of this tree are the configuration files for the
testing process. The following are the major subdirectories:

• a subdirectory of Tcl programs containing the test logic for batch testing

• a subdirectory of test programs with branches (lower-level directories) for each
individual test program – test001 , test002 , etc.

• a subdirectory for the analysis programs, with branches for the different analysis
programs in source code form and a bin subdirectory for executables

• a “trusted” subdirectory for the outputs from a trusted tool set, with branches for
each individual test program (see discussion of trusted objects below).

This organization makes it easy to find and modify the configuration files, add new test
cases, or if necessary, modify or extend the test logic.

Use of trusted objects

Trusted object files are those produced by a “trusted” tool set when given PEATS’s
standard input files (i.e., test programs) to process. The trusted tool set could be one that
is known for its authority and reliability with respect to the ELF and DWARF

2 Architecture
Supplemental testing using run-time validation

6 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

specifications, or it could be an earlier well-tested version of the same tool set on which
PEATS is being run..

Use of trusted objects is an important part of the general framework for testing. Object
files created by the tool set under test are linked with trusted object files (different
components of the same program) to check that they can be successfully linked to form a
complete program. Similarly, archives created by the tool set being tested are linked with
trusted object files to check for interoperability.

Supplemental testing using run-time validation

Specialized run-time tests are provided to verify conformance in areas that are difficult
to check statically. As an example, it is not easy to examine generated code and
determine that function arguments are correctly evaluated and correctly passed. The most
interesting cases for testing purposes may be those in which the argument expressions
are quite complex and optimization of generated code obscures the connection between
source code and generated code. As another example, correct data layout involving
packing, alignment, and byte order is more easily validated by run-time tests. Such
run-time tests require a suitable target environment.

The following checks rely on the use of well-understood test cases (source programs)
and the examination of the resulting data structures in target memory and the behavior of
test programs in execution:

• specific tests for proper caller-callee linkage, with verification of correct parame-
ter passing and register preservation

• specific tests for correct data representation and layout

The supplemental run-time tests require a suitable target. See “Target Hardware” on
page 25 for details. The target is connected to the host via an RS-232 serial
communications link as shown below.

UNIX or

RS-232 serial
communications link

Figure 2-2 Host-target configuration for supplemental testing

PowerPC Target System
Windows 95 Host

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 7

2 Architecture
Extensibility of PEATS

Extensibility of PEATS

PEATS is designed for easy adaptation to the needs of particular users. There are several
different directions users can take in extending PEATS.

Adding test programs

Users can provide additional test programs (C programs) to be run through PEATS. Such
programs must conform to ISO standard C in order for the source analyzer to process
them (certain pragmas and extensions for alignment and packing are accomodated, see
“Editing configuration files” on page 13). A few simple steps will make a user’s own test
programs part of the static testing framework:

• each user program (one or more files) must be placed in its own test subdirectory

• each user program needs an accompanying Tcl control file in the same subdirec-
tory with a single text line to invoke the test-sequencing logic.

Adding test variables

Users can modify or add test variables to create new variations in test runs. For example,
instead of testing compilations with and without optimization, a user might want to test
four different levels of optimization. Or a user might want to create a new “architecture”
test variable to run test variations for the different target processor models supported by a
tool set.

Testing other tools

PEATS as delivered is ready to test three tools, a compiler, a linker, and an archiver.
However, the test logic is organized so that it is generally unaware of and indifferent to
the exact number of tools to be tested. Instead, when a user asks for a “compiler” test
run, an attempt is made to find a correspondingly-named Tcl module (compiler.exp).
If the required Tcl module is found, then the testing can proceed. Following this pattern,
a user could create a test for a new tool, say a “converter” tool, and by properly naming
the test logic file for that tool (converter.exp), the new test will become part of the
general framework for static testing and thereafter four tools will be testable.

3 Testing Logic
Framework

8 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

3 Testing Logic

Framework

The framework for testing provides an iterative process that can perform a very large
number of tests in a single run.

For example, if three tools are tested against 50 test programs with 16 variations of the
test variables (with and without optimization, with and without debug, etc.) then there
will be 2,400 (3x50x16) test variations run. Each single test, say a linker test, may
involve many linker steps and verification of each link, so the full test sequence is highly
combinatorial.

The user runs PEATS by invoking DejaGNU from the command line using the standard
DejaGNU runtest command. Options to runtest allow selection of tests for specific
tools or specific tests. Details are given later.

DejaGNU begins by reading the configuration files, including plan.exp which defines
the test variables, e.g. debugging (with or without), byte-ordering (big- or little-endian),
etc. The options on the command line are combined with the test variable definitions to
determine what tests will be run. Some of the test programs carry out the supplemental
testing for caller-callee usage and data layout. These tests require the target hardware,
which must be connected and ready if these tests are to be run.

Once the configuration information is checked, DejaGNU cycles through all of the
requested tests and produces summary and detail reports as requested.

Testing steps

In more detail,when PEATS is run the test logic proceeds as follows:

• CONFIGURATION: The configuration information is checked; configuration
variables must be defined and have acceptable values.

• TEST PROGRAMS: Each test program in the sub-tree of test programs is com-
pletely processed before going on to the next test program.

• VARIATIONS: Each allowed variation of the test variables is fully applied
before going on to the next variation. For example, testing is done first with the
variation defined as the ISO language dialect, big-endian byte order, with debug
information, and with optimization. For a given test program, each such varia-
tion is fully explored before going on to the next variation of the test variables.

• TOOLS TO BE TESTED: For a given test and variation, each tool is fully tested
before going on to the next tool. For example, compiler checking is done first,
then the linker is checked, and finally the archiver is checked.

• STEPS FOR EACH TOOL: As each tool is tested, the tool is applied and then its
output is checked, then the tool is applied again and the output checked, until all
steps for that tool have been completed. For example, the compiler is applied to

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 9

3 Testing Logic
Testing choices

each source module in a test directory, whereas the linker is used repeatedly to
link program modules in different groupings and sequences.

Figure 3-1 “Tool flow” below shows the tool flow for a single C source file.

• REPORTING: Every low-level step and its result (pass, fail, or unresolved) is
listed in the detail report and tallied in the summary report.

Testing choices

Through settings in the configuration files and options on the DejaGNU runtest
command line, a user can control the testing process without modifying any code.

By modifying the configuration file plan.exp , a user can disable any case or cases of
any of the test variables. So, for example, if a user disables the little-endian byte
ordering, all tests are run with the big-endian byte ordering and there are only half as
many variations to be run for each test.

On the runtest command line, a user must specify which tools are to be tested. The
standard choices are compiler, linker , archiver, or all. A user may also list which tests are
to be used (e.g. test001,test005,test020); the default is to apply all tests. A
mechanism is provided to exclude supplemental tests requiring target hardware.

The following figure shows the flow for a test of a single source file. When a test
directory contains multiple source files, the same flow is carried out for each. If a linker
test is requested, the object files in the test are linked to produce the file test.out , and
this is then verified by ofvppc . If an archiver test is requested, the object files and
archive are tested by lvppc .

C source
 file.c

Expectations
 file.e

Object
 file.o

cparse C compiler

Figure 3-1 Tool flow

ofvppc

3 Testing Logic
Exception handling

10 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Exception handling

PEATS is prepared to handle several different kinds of exceptions that may arise during
a run.

• At the start of each run, the test logic checks for the existence of certain needed
files, the presence (definition) of certain needed variables, and the consistency of
names which must correspond. If any of these prerequisite conditions is not satis-
fied, an error message is written and the run is abandoned.

• If the test logic encounters an internal inconsistency, resulting from a program-
ming error in the distributed logic files or a user’s added logic files, the test run
is abandoned. If the error is not noticed internally but is noticed by the DejaGNU
test framework, then the run will be halted by DejaGNU with a series of mes-
sages pinpointing the erroneous statement and its program context.

• If a tool under test writes any output messages, those are included in the test
report. If the tool returns an error code or fails to produce its expected output
file, then the attempt to validate the output from that tool is abandoned for that
particular instance (the test is therefore “unresolved”).

• Conformance errors detected by the analysis tools are written to the detailed
report file and result in a score of “fail”.

• If trusted object files are not found, then the tests which depend on those files are
skipped.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 11

4 Coverage
What is tested

4 Coverage

What is tested

The following are the general categories of checks that are made. For a detailed listing of
assertions, see Appendix A, and for a list of all tests cases, see Appendix C.

• Object file syntactic checks

• Source-to-object semantic checks

• Object-to-object linker consistency checks

• Incremental linking

• Cross-linking (mixing optimized and unoptimized modules, etc.)

• Archive syntax checks

• Object-to-archive consistency checks

• Correct calculation of relocation expressions

• Archive usability checks

• Tool set interoperability (mixing with trusted objects)

• Run-time checks of caller-callee linkage, data representation, and data layout.

What is not tested

• Correct generation of caller-callee linkage, data representation, and relocation
are all checked; instruction sequences are not otherwise checked.

• Provision is made for certain command line options, pragmas, and C extensions
relating to alignment and packing. Other options and pragmas are ignored.

• Correct generation of debugging information for offsets of members within struc-
tures, including bit offsets for bit fields, is checked by examing applicable
DWARF Location Descriptions. Location Descriptions are not otherwise
checked.

• Frame information in .tags and related sections is checked for correct form
and internal consistency, but is not checked semantically.

• Except for addresses, all aspects of DWARF Line Number Tables are checked,
including existence of a statement for each entry.

Methods used to obtain broad coverage

For PEATS to be effective, it must be thorough in checking the many details of
compliance with the standard (this is reflected in the many assertions listed in Appendix
A). Furthermore, PEATS must be designed to ensure that its test runs will fully explore
the behavior of the tools being tested so as to exercise all or almost all of the checking

4 Coverage
Checks on coverage

12 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

that has been provided. The following strategies are used to force such broad coverage of
the built-in checking capabilities.

• Many of the test programs are single-focus programs, designed to explore com-
pliance with a particular aspect of the standard. Several careful readings of the
standards have been used to look for additional items which can be tested
through such focused testing.

• Several public domain programs are used to test the ability of the tools to handle
large programs with a realistic mix of constructs; this is broad horizontal testing
rather than focused testing.

• Testing is done across all defined variations of the test variables so as to exercise
the tools in all supported combinations of relevant options. This checking seeks
to expose problems that may be particular to optimization, debugging informa-
tion, language dialect, etc.

In POSIX terminology, PEATS attempts to be EXHAUSTIVE in checking every
syntactically testable aspect of every requirement in the standard. With respect to
requirements that cannot be checked by syntactic examination alone, PEATS employs
the following techniques.

• It analyzes source files and creates expectations that are used to enforce certain
semantic requirements.

• It performs run-time checks to observe whether certain additional semantic
requirements have been met.

Semantic checking is less than EXHAUSTIVE because not all possible checks are made.
For example, no checks are made on program logic or computational expressions to
ensure that semantics are preserved from source code to object code.

It should also be noted that PEATS evaluates only those objects and archive files that are
derived from its test cases and those test cases are perforce only a sample of the possible
source files that could be input to the tool set. In that sense, the entire Test Suite operates
only at the THOROUGH level, providing sufficient testing to validate that the
implementation under test matches the stated requirements by using representative data
and testing boundary conditions.

Checks on coverage

In addition to the design and development steps taken to ensure broad coverage of the
available checks, there is a a built-in mechanism for computer tracking of assertion
coverage. Around every assertion in the verification programs there is code to record the
exercise of that checking mechanism. By running the full suite of test programs and
variations and reporting which of the assertion checks have been used, the set of unused
checks can be identified. Supplementary test cases can then be provided to cover the
previously assertions not previously reached. This method is used until all checks that
reasonably can be exercised are in fact being exercised by the test programs.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 13

5 User Interface
Installation and configuration

5 User Interface

Installation and configuration

Installation of PEATS is not difficult. The product is delivered as a single “tar” file for
UNIX platforms and as a “pkzip” file for Windows 95. The extraction process creates all
necessary directories and places all files in the appropriate directories. Two additional
steps are required to complete the installation:

• obtaining executable versions of the analysis programs (source code analyzer,
object file verifier, and archive verifier) which can be run on the user’s platform

• editing the configuration files to adapt PEATS to the user’s environment – the
platform and tools to be tested.

Building Test Suite components

PEATS is delivered with a Makefile for setting up the necessary executables.

For some commonly used platforms (listed in the PEATS User’s Guide) PEATS includes
pre-built executables. In such cases, a simple make command is all that is needed to
install the executables. For example, on AIX, the command make aix copies the AIX
executable into the bin directory where they are needed.

For other platforms, a user needs to review the Makefile and adapt it according to the
instructions written in the Makefile. For example, a user will need to specify the name of
the C compiler and the form of some options to be used. After adapting the Makefile, the
user can run the make program to build the needed executables.

Editing configuration files

The files tools.exp , plan.exp , and ofv.ini in the root directory of PEATS
contain configuration information that is a prerequisite to any testing. As distributed,
these files contain sample values; these are not default values. The configuration files
must be modified to match the environment in order to ensure correct operation of
PEATS.

The file tools.exp contains settings that should only need to be configured once,
during installation. These settings are expressed in the form of assignments to Tcl
variables. A detailed list of these variables can be found in the PEATS User’s Guide.
Collectively, these variables provide the following information:

• invocation names (path specifications) of the tools to be tested – compiler,
linker, and archiver

• standard option specifications to be used with the tools

• option designators to cause the tools to perform specific functions, e.g., the
option needed to get the archiver to extract files from an archive

5 User Interface
Runtest command line

14 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

• names and options for operating system tools, e.g., make a directory, file copy,
file move, and file remove

• standard extensions for source files, object files, and archive files.

In addition, tools.exp contains variables to indicate which cases of the test variables
the tool set does or does not support.

The file plan.exp defines the test variables (debug, dialect, optimization, and order)
the allowed cases of each variable, and the options used to effect those cases. It is the
options that are of particular concern during installation and setup. For example, to
include debugging information, there may be option designators for the compiler as well
as for the linker; a user needs to specify these options correctly in order for PEATS to
exercise the plan variations as intended.

ofvppc requires the file ofv.ini to condition it for the object files generated by the
compiler and linker under test. Example settings in that file are:

• Prefix for architecture specific and vendor-supplied section names.

• Object file extension name.

• Type for a plain “char”.

• Type for a plain bit-field.

• Whether debugging information entries (DIEs) for function declarations for func-
tions not referenced are required.

• Whether there shall be a lexical block DIE for the block representing the body of
a function.

• Whether all nested lexical blocks shall have corresponding DIEs, or only those
declaring names.

• Whether DIEs for unnamed bit-fields are required.

• Prefix and suffix attached to names of global and local functions and objects in
the symbol table.

The file contains extensive comments and is self-documenting.

Runtest command line

To start PEATS, a user invokes the DejaGNU runtest program. The command line
that invokes runtest determines which tools are tested, which test cases are used, and
the detail reporting level. For additional flexibility, the command line also allows control
of options used with particular tools during the run.

Basic syntax

The following is the general form of the runtest command line for starting PEATS:

runtest --tool peats RUN=tool_name tests detail_level

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 15

5 User Interface
Runtest command line

The specification --tool peats is required on every such command line – it specifies
the directory and subdirectories containing the test programs of PEATS.

In the following example, compiler tests are applied to one test case (test001), and a
verbose detail report file is written.

runtest --tool peats RUN=compiler test001.exp --verbose

Specifying the tools to be tested

On the runtest line, the phrase RUN= is used to indicate which of the tools is to be
tested. In the sample above, the compiler is tested. The following tool_name keywords are
recognized after the equal sign:

• compiler compiler tests (compile source files and verify object file)

• linker linker tests (link object files in different ways and verify object files)

• archiver archiver tests (build, verify, and use library files)

• target supplemental tests which execute on the target system

• all combination of compiler, linker, and archiver tests

Specifying the test cases to be used

On the runtest line, one can list the test programs to be used; if none are listed then all
test cases in PEATS are used. Test programs must be located in the subdirectories under
peats . In the default case, every file in the test directories of the form “name.exp” is
assumed to contain the Tcl code to initiate a particular test case.

Controlling the detail reporting level

PEATS produces both a summary report and a detail report as described in Chapter
"PEATS Reports" beginning on page 21. If a detail level is not specified on the
runtest command line then the detail report will have the same information as the
summary report.

Following DejaGNU conventions, a first level of detail is requested by adding
--verbose to the runtest line. This provides detail about every testing variation and
step in the run as well as information about every assertion that fails during the analysis
of an object file or library file. For additional detail use the verbose modifier twice, e.g.,

runtest --tool peats RUN=all --verbose --verbose

The verbosity level also affects the details sent to the standard output during a run.

5 User Interface
Command line syntax and options for the analysis tools

16 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Passing options to specific tools

In special situations, it may be desirable to use the runtest command line to set certain
options for particular tools. The following constructs can be used to add one or more
options during a single test run:

Options added in this way are inserted into the appropriate command lines immediately
after those options specified in the configuration file tools.exp (see previous
discussion in “Editing configuration files” on page 13).

As an example, the following command sets options for the compiler and the object
verifier:

runtest --tool peats RUN=all CC_USING=-g OFV_USING=”-D -v2”

The quotes surrounding options may be omitted for a single simple option (one word, no
spaces).

Command line syntax and options for the analysis tools

The analysis tools are invoked by PEATS with options from two possible sources:

• As specified in the configuration file tools.exp .

• From “x_USING” options on the runtest command line as described in “Pass-
ing options to specific tools” on page 16.

In addition, the analysis tools may be invoked from the command line to verify files
manually.

The next three sections describe the analysis tools and their options. Use these
descriptions to customize tools.exp or for manual invocation.

C source program analyzer

The program cparse analyzes a C source program and generates an expectations file
used during semantic checking of an object file by ofvppc . The name of the
expectations file is the same as that of the C source file but with the extension changed to
“ .e ”. The following shows the usage of cparse (enter cparse without arguments to
get this).

cparse (C File Parser for PEATS) version r.n mm-dd-yy
Copyright (c) 1996 ApTest.

CC_USING="options" add options to invocations of the compiler

LD_USING="options" add options to invocations of the linker

OFV_USING="options" add options to invocations of the object verifier

LV_USING="options" add options to invocation of the library verifier.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 17

5 User Interface
Command line syntax and options for the analysis tools

Generates expectations for object files based on C
sourcefiles.

Usage: cparse [options] <source_file>

Program options are:

For example, the command line:

cparse myprog.c

reads the C source file myprog.c and produces an expectation file called myprog.e
which will later be used as input to the Object File Verifier.

Object File Verifier

The ofvppc program verifies the correctness of a single PowerPC object file.
Correctness is verified in terms of assertions of two types: syntactic assertions which
check form and consistency within the object file, and semantic assertions which check
for consistency between the object file and its corresponding source file (see “Analysis
programs” on page 3 for further discussion).

The following shows its command line interface (enter ofvppc without arguments to
get this).

Usage: ofvppc [-abeDlMOPQSTV]
[-C filename] [-c filename] [-d directory]
[-p code|data|mixed] [-r attribute-report-filname]
[-s area:assertion_id | :filename] [-u filename]
[-v level] object-filename

-o:filespec use filespec for pathname of the output file

-q quiet mode (omit program identification)

-r make outer source file name relative (no
path)

-a show all errors, do not stop after the first

-b expect big-endian

-C add to specified file all coverage messages (no files to be verified)

-c add to specified file the coverage messages for assertions actually covered

-D display file’s ELF/DWARF information

-e verify ELF only

-l do linked file analysis (the object-filname must be a linked output file

5 User Interface
Command line syntax and options for the analysis tools

18 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Notes:

1. The -s option suppresses an assertion and may be given in one of two forms:

-s < area>:< assertion_id>
-s :< filename>

Each <area>:<assertion_id> combination identifies a single assertion. See Appendix
A for a list of all valid area and assertion_id names. If the second form is used, the
file should contain <area>:<assertion_id> pairs, one per line. Blank lines and lines
beginning with a ‘/’ character will be ignored and may be used to document the rea-
son for suppressing assertions. There is a limit of 100 suppressed assertions.

This option suppresses the reporting of the given assertion. However the assertion is
still checked. In some cases, ofvppc may still fail if data related to the suppressed
assertion is required by later code. Absent such a failure, an object file causing only
suppressed assertions will be reported as valid.

Using ofvppc with linked files

The term linked file refers to an executable or relocatable (for incremental linking) file
output by a linker. The files input to the linker to make a linked file are referred to as
contributing files.

As the term is used here, “semantic” analysis for object files refers to validation of a
single object file against the expectations generated by applying cparse to the
corresponding C file (and any files it includes). If run without special options on a linked
file (either executable or relocatable for incremental linking), ofvppc will assume it is
to do semantic analsyis and will expect only one contributing file in the linked file.

There are a number of assertions specific to analysis of linked files (“Linked Objects” on
page 114). For example, some of these linked-file assertions validate that all symbols

-M suppress processing of semantic assertions for preprocessor directives

-O do not check certain assertions likely to fail with optimized code

-P print text of all assertions to standard output (no files to be verified)

-p expect PIC, PID, or mixed (PIC and/or PID and/or plain) [may be repeated]

-Q quiet mode - suppress final valid or invalid object file message

-r update report of usage of attrbiutes-by-tag in specified file

-S suppress processing of semantic assertions

-s suppress specified assertions [may be repeated or be in specified file]

-T do not dump attributes in the DWARF debugging information entries tree

-u add unique assertions identifiers to the specified file

-V print the version number

-v print verbose error messages at the specified level

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 19

5 User Interface
Command line syntax and options for the analysis tools

have been transformed correctly from the contributing files to the linked files, and that
relocation expressions have been evaluated correctly. Use of these special assertions is
called linked-file analysis.

Linked file analysis is requested by the -l options.

As noted in “Editing configuration files” on page 13, ofvppc also requires a file,
ofv.ini , which provides the ofvppc program with information on certain defaults and
extensions used by the compiler under test.

A sample ofv.ini file is delivered with PEATS and most be checked or modified by
the user during installation to conform to the compiler under test.

Assertions

Assertions issued by ofvppc have a form illustrated by the following:

DBGPUNB: MISSING_PUBNAMES A:Syn DWARF1 3.10.1
A global object shall be represented by an offset/name
pair in the ".debug_pubnames" section.

where:

Library File Verifier

The lvppc program verifies the correctness of one or more PowerPC archive files
(PEATS always invokes ofvppc with only one input object file on the command line).

DBGPUBN The assertion area. The assertions are categorized into 13 areas,
each of which typically relates to one type of section in the
object file. Appendix A is organized by area, and the area name
is used with the -s option to suppress individual assertions.

MISSING_PUBNAMEThe assertion-id. These are unique within an area (see below),
and are used with the -s option to suppress individual
assertions.

A One of two assertion classes as defined by POSIX 1003.3:

A a base required assertion

C a base conditional assertion

Syn Indicates whether an assertion is syntactic (“Syn”) or semantic
(“Sem”).

DWARF1 A short name that identifies the specification from which the
assertion is derived. The -V option identifies the specifications
supported by ofvppc .

3.10.1 A reference to the specification from which the assertion is
derived. For DWARF assertions, the reference is a paragraph
number; for other assertions, it is a section title.

A global... The text of the assertion.

5 User Interface
Command line syntax and options for the analysis tools

20 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

While archives may contain files of any type, lvppc checks only object files within an
archive. In all cases, it makes syntactic and semantic checks on the form of the archive,
and consistency checks between the archive and the object files contained within it.

The lvppc command line interface is:

Usage: lvppc [-PQ] [-C filename][-c filename]
[-s assertion_id | :filename] archive-filename

The format of lvppc assertions is similar to that of ofvppc .

-C add to specified file all coverage messages (no files to be verified)

-c add to specified file the coverage messages for assertions actually covered

-P print text of all assertions to standard output (no files to be verified)

-Q quiet mode - suppress final valid or invalid object file message

-s suppress specified assertions [may be repeated or be in specified file]

-V print the version number

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 21

6 PEATS Reports
DejaGnu reports

6 PEATS Reports

DejaGnu reports

Two standard reports are produced by DejaGnu:

• A Summary Log containing the names of the tests run and their results.

• A Detailed Log showing the output generated by the tests.

Unless the --outdir option to runtest is used these files will be placed in the
current working directory. The file names are toolname.sum and toolname.log where
toolname is the name given to runtest with the --tool option. Thus, with PEATS,
these are always peats .sum and peats .log .

Summary logs

The DejaGnu summary report provides a one-line summary of each result produced by
PEATS. As each PEATS test generates and validates objects/archives multiple times
from a single test program, multiple such lines will be included in the summary for each
test. An excerpt from a sample summary log is shown in below.

Test Run By craig on Tue Oct 31 21:52:39 PST 1995
Native configuration is aix

=== peats tests ===

Running ./peats/test017/test017.exp ...
. . .
PASS: verifying “tested/test017/nodebug/iso/no-opt/little/test017.o”
FAIL: verifying “tested/test017/nodebug/iso/no-opt/little/test.out”
Running ./peats/test039/test039.exp ...
. . .
FAIL: verifying “tested/test039/debug/iso/no-opt/little/root.out”
UNRESOLVED: ERROR linking in directory

“/usr/home/users/craig/work/tested/test039/debug/iso/no-opt/little”
WARNING: There were archiver messages for test.a
FAIL: verifying “tested/test039/debug/iso/no-opt/little/test.out”
PASS: verifying “tested/test039/nodebug/iso/opt/little/test039a.o”
. . .

=== peats Summary ===

of expected passes 12
of unexpected failures 18
of unresolved testcases 6

Figure 6-1 Sample summary log

6 PEATS Reports
Reporting attribute usage based on semantic expectations

22 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Detailed Logs

The content of the detailed log depends on the level of verbosity requested when PEATS
is run. If the --verbose option to runtest is not used, the detailed log will be
identical to the summary log.

If the --verbose option to runtest is used, the detailed log will be contain
information about the test programs used and the details of failures: the assertion(s)
failed and the reasons for the failure.

 An extract from a detailed log for the C Compiler tests generated with --verbose on
the runtest command and with the-v2 option given to ofvppc follows.

Opening log files in .
Test Run By craig on Tue Oct 31 23:19:33 PST 1995
Native configuration is aix

. . .
=>=>=> TEST “test017” (in /usr/home/users/craig/work/ppc/test017)

=>=> VARIATION (With-Debug ISO No-Optimize Little-Endian)

=> STEP compiler-command -g test017.c

=> STEP tools/bin/ofvppc -a -Q -v0 -v2 test017.o
*** ERROR in verifying “tested/test017/debug/iso/no-opt/little/test017.o”
E_SHOFF_INVALID A Syntactic ELF Header
 If the value of the ELF header’s e_shoff field does not equal zero the
 value shall be a multiple of 4.
 e_shoff= 0x42e7

=== peats Summary ===

of expected passes 12
of unexpected failures 18
of unresolved testcases 6

Figure 6-2 Sample detail log

Reporting attribute usage based on semantic expectations

PEATS validates conformance of object files to standards with a goal of improving
inter-operability of tools. Appendix 1 of the DWARF specification “enumerates the
attributes that are most applicable to each type of debugging information entry.”
However, it states that a “DWARF producer is free to generate any, all, or none of the
attributes described in the text as being applicable to a given entry.”

The second quotation is an overstatement because many debugging information entries
have attributes which are required by other sections of the specification. Nevertheless,
except for such required attributes, PEATS cannot and does not report errors for an
attribute listed for some entry in Appendix 1 but not present for some or all instances of
that entry, even when it is clear that, for example, a debugger would need the attribute.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 23

6 PEATS Reports
Reporting attribute usage based on semantic expectations

Thus, a compiler or linker not generating such attributes may still “conform” to the
standard, even though its ability to inter-operate with other tools is compromised.

To help characterize the performance of the tools under test with respect to this
debugging information, ofvppc can generate an “attribute usage” report showing the
attributes used for each type of debugging information entry in the “.debug” section of
an object file, and how this attribute usage compares to 1) the semantic expectations
generated by the cparse analyzer, 2) Appendix 1 of the DWARF specification, and
3) usage by the “trusted” tool set.

The -r option to ofvppc specifies a file for generation of the attribute usage report. If
the report file already exists, it is updated. As delivered, PEATS uses the -r option when
invoking ofvppc , and deletes the file at the beginning of a run so that the report will
show aggregate attribute usage for all tests made during the run.

An excerpt from an attribute usage report follows:

TAG_global_variable (fundamental type) 1388
AT_sibling ST AT_fund_type ST
AT_name ST AT_location ST

TAG_global_variable (modified fundamental type) 148/149
AT_sibling ST AT_location ST 147
AT_name ST AT_start_scope S 1/2
AT_mod_fund_type ST AT_lo_user + 1 148

Each entry reports on one type of debugging information entry. The first line shows the
tag or sub-tag (see below) naming the debugging information entry and a count of the
form describing the tag’s appearance in object files contributing to the report. The count
is one of two forms:

For each attribute of each tag, the report shows:

• If present, the letter S, meaning that 1) the attribute appears in Appendix 1 of the
DWARF specification (the “most applicable” attributes), and 2) that it is relevant
for C programs and therefore “expected” by the cparse analyzer. A file contain-
ing the table of these expected attributes is delivered with PEATS.

• If present, the letter T, meaning that the attribute is used for this type of entry by
the “trusted” tool set. A file giving this table is also delivered with the Tool
Suite, and may be edited or replaced by the user if a new run of the trusted tool
set is made.

➤ If neither an S nor a T is present, the attribute was generated by the tool
under test but not listed in the DWARF Appendix 1 nor produced by the
“trusted” tool set. The AT_lo_user+1 attribute above is an example.

n The tag was expected to appear n times and did.

m / n The tag was expected to appear the n number of times but actually
appeared only the m number of times. This likely indicates an
error.

6 PEATS Reports
Reporting attribute usage based on semantic expectations

24 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

• If the attribute was expected and appeared the expected number of times, then no
count is shown. Otherwise, one or two counts are shown, with meaning depend-
ing on the presence of the S and/or T letters (shown as ST in the table below):

The concept of sub-tag entries is used to differentiate expected variants of a type of
debugging information entry. The example shown above shows two variants of the
debugging information entry for global variables of a fundamental type and global
variables of a modified fundamental type (two additional sub-tags for user-defined-type
and modified-user-defined-type are not shown here). All of the first should have an
AT_fund_type attribute while all of the second should have an AT_mod_fund_type
attribute instead. If these were combined under a single entry, it would be necessary to
use the m/n form for counts for this any perhaps related attributes, making it more
difficult to spot anomalous behavior.

For entries which are present in either the DWARF specification or the “trusted” tool set,
but which are not present in any occurrence of the tools under test covered by the report,
only the first line of the entry is shown giving the entry tag or sub-tag name and a 0
count.

The report ends by characterizing the performance of the tools under test versus that of
the DWARF specification and the “trusted” tool set. These characterizations show the
number of unique debugging information entries (tags) and attributes detected for each
of the three cases, and the total number of tag and attribute instances for the tools under
test.

ST m The attribute was expected to appear with every entry, but
appeared only m times. This likely indicates an error.

ST m / n The attribute was expected n times but actually appeared only m
times (where n < the number of appearances of the whole tag
entry). The AT_start_scope attribute is an example. The case
m = n is probably normal; m != n may represent anomalous
behavior.

 m The attribute was not expected by the cparse analyzer but
appeared m times. The AT_lo_user+1 attribute is an example.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 25

7 Execution Environment
UNIX

7 Execution Environment

UNIX

In order to run PEATS, a UNIX host environment needs to provide:

• A UNIX shell (if ofvppc and lvppc are be run stand-alone)

• Tools under test

• A native C development system (for building analysis tools — not necessary if
using binaries shipped with the product, see Chapter "Packaging" beginning on
page 26)

• DejaGnu (the distribution of which includes Tcl and Expect). DejaGnu must be
installed on the implementation before PEATS is run. PEATS was developed
and tested with DejaGnu version 1.2. This release of DejaGnu can be retrieved
by anonymous ftp from the host prep.ai.mit.edu , file name
/pub/gnu/dejagnu-1.2.tar.gz .

• The make command

• The tar command.

Windows 95

A Windows 95 host environment needs to provide:

• Tools under test

• The Microsoft Visual C/C++ development system (for building analysis tools —
not necessary if using binaries shipped with the product)

• PKZIP for Windows. PKZIP is used to unpack the PEATS distribution, and also
the DejaGnu and Tcl distributed with PEATS.

PKZIP for Windows (as opposed to PKZIP for DOS) is required because
DejaGnu includes files names not conforming to the DOS 8.3 standard. PKZIP
for Windows is shareware and can be downloaded by pointing a World-Wide
Web browser at http://www.pkware.com .

A modified version of DejaGnu, which includes Tcl, is shipped with PEATS for the
Windows 95 environment.

Target Hardware

For the calling convention and data layout tests, the following target hardware and
software, or their equivalent, are required:

<to be specified>

A serial RS-232 communications link from the host to the target is also required.

8 Packaging

26 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

8 Packaging

PEATS is shipped in tar file format for UNIX platforms and pkzip format for the
Windows 95 platform.

The UNIX tar file includes binaries for AIX systems.

The Window-95 pkzip file contains binaries for Intel or compatible microprocessors
supporting Windows 95.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 27

9 Documentation

9 Documentation

PEATS includes two manuals. These documents are provided as postscript files.

• The PEATS User’s Guide provides information on operating PEATS including:

• Introduction, Overview, and Architecture

• Installation and Configuration

• Execution

• Reports

• Stand-alone use of the analysis tools

• Debugging and trouble shooting

• A complete list of all assertions

• A complete list of all tests provided with PEATS.

• The PEATS Programmer’s Guide provides information on maintaining and
evolving PEATS, including:

• Structure of PEATS, especially all directories.

• Details of the testing process and instructions for modifying it and for modi-
fying or adding tests.

• Theory of operation of the analysis programs.

The PEATS Programmer’s Guide is supplemented with in-line documentation of the
PEATS source code.

Each release of PEATS also contains Release Notes documenting:

• Changes since the last release

• Known problems and work arounds

A Assertions
OFVPPC Assertions

28 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

A Assertions

See “Assertions” on page 19 for details on the format of an assertion and the meaning its
various fields.

OFVPPC Assertions

ofvppc supporting specifications:

SVR4 ABI
System V Application Binary Interface
Fourth Edition
Novell, Inc.
122 East 1700 South; Provo, UT 84606

SVR4 ABI PPC
System V Application Binary Interface PowerPC Processor Supplement
Revision A, March 1995
SunSoft
2550 Garcia Ave.; Mountain View, CA 94043
Part No: 802-3334-01

PPC EABI
PowerPC Embedded Application Binary Interface
Version 1.0, 1/10/95
Motorola, Inc
6501 William Cannon Drive West; Austin, TX 78735
Contact: Microcontroller Technologies Group

DWARF 1
DWARF Debugging Information Format
Revision: 1.0.3 (July 31, 1992)
UNIX International
Waterview Corporate Center; 20 Waterview Blvd.; Parsippany, NJ 07054
Contact: Vice President of Marketing

ELF Header

HEADER: EF_PPC_EMB_NOT_SET A: Syn
 PPC EABI: 4. Machine Information

The ELF header’s e_flags member shall have bit EF_PPC_EMB (0x80000000) set.

HEADER: ET_TYPE_NOT_ET_EXEC A: Sem SVR4 ABI: 4. Introduction
The ELF header’s e_type member shall equal ET_EXEC for an executable file.

HEADER: ET_TYPE_NOT_ET_REL A: Sem SVR4 ABI: 4. Introduction
The ELF header’s e_type member shall equal ET_REL for a relocatable file.

HEADER: E_EHSIZE_INVALID A: Syn SVR4 ABI: 4. Header
The ELF header’s e_ehsize member shall equal sizeof(Elf32_Ehdr) = 52.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 29

A Assertions
OFVPPC Assertions

HEADER: E_IDENT_EI_CLASS_INVALID A: Syn
 SVR4 ABI: 4. ELF Identification

The fifth byte of the ELF header’s e_ident member (e_ident [EI_CLASS])
shall equal ELFCLASS32 (1).

HEADER: E_IDENT_EI_DATA_INVALID A: Syn
 SVR4 ABI: 4. ELF Identification

The sixth byte of the ELF header’s e_ident member (e_ident [EI_DATA])
shall be one of the following:

 Name Value
 ----------- -----
 ELFDATA2LSB 1
 ELFDATA2MSB 2

HEADER: E_IDENT_EI_DATA_WRONG A: Sem
 SVR4 ABI: 4. Machine Information

The ELF header’s e_ident [EI_DATA] member shall be ELFDATA2MSB for a
big-endian object file.

HEADER: E_IDENT_EI_DATA_WRONG A: Sem
 SVR4 ABI: 4. Machine Information

The ELF header’s e_ident [EI_DATA] member shall be ELFDATA2LSB for a
little-endian object file.

HEADER: E_IDENT_EI_MAG0_INVALID A: Syn
 SVR4 ABI: 4. ELF Identification

The first byte of the ELF header’s e_ident member (e_ident [EI_MAG0])
shall equal 0x7f.

HEADER: E_IDENT_EI_MAG1_INVALID A: Syn
 SVR4 ABI: 4. ELF Identification

The second byte of the ELF header’s e_ident member (e_ident [EI_MAG1])
shall equal 0x45.

HEADER: E_IDENT_EI_MAG2_INVALID A: Syn
 SVR4 ABI: 4. ELF Identification

The third byte of the ELF header’s e_ident member (e_ident [EI_MAG2])
shall equal 0x4c.

HEADER: E_IDENT_EI_MAG3_INVALID A: Syn
 SVR4 ABI: 4. ELF Identification

The fourth byte of the ELF header’s e_ident member (e_ident [EI_MAG3])
shall equal 0x46.

HEADER: E_IDENT_EI_VERSION_INVALID A: Syn
 SVR4 ABI: 4. ELF Identification

The seventh byte of the ELF header’s e_ident member (e_ident[EI_VERSION])
shall equal EV_CURRENT (1).

HEADER: E_IDENT_PADDING_INVALID A: Syn

A Assertions
OFVPPC Assertions

30 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

 SVR4 ABI: 4. ELF Identification
The eighth through sixteenth bytes of the ELF header’s e_ident member
(e_ident[EI_PAD] through e_ident[EI_NIDENT-1]) shall equal zero.

HEADER: E_PHENTSIZE_TOO_SMALL A: Syn SVR4 ABI: 4. Header
The e_phentsize member shall be either zero or at least sizeof
(Elf32_Phdr) = 32.

HEADER: E_PHENTSIZE_ZERO A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_phoff member does not equal zero its e_phentsize
member shall not equal zero.

HEADER: E_PHNUM_NON_ZERO A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_phoff member equals zero its e_phnum member shall
equal zero.

HEADER: E_PHNUM_ZERO A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_phoff member does not equal zero its e_phnum member
shall not equal zero.

HEADER: E_PHOFF_BEYOND_EOF A: Syn SVR4 ABI: 4. Header
The ELF header’s e_phoff member plus the minimum program header length of
sizeof (Elf32_Phdr) = 32 shall be less than the size, in bytes, of the
file.

HEADER: E_PHOFF_MISALIGNED A: Syn
 SVR4 ABI: 4. Data Representation

The ELF header’s e_phoff member shall equal 0 or a multiple of 4.

HEADER: E_PHOFF_SHOULD_BE_NON_ZERO A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_type member equals ET_EXEC (2) its e_phoff member
shall not equal zero.

HEADER: E_PHOFF_TOO_SMALL A: Syn SVR4 ABI: 4. Header
The ELF header’s e_phoff member shall equal zero or a value greater than
or equal to its e_ehsize member.

HEADER: E_SHENTSIZE_ZERO A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_shoff member does not equal zero its e_shentsize
member shall not equal zero.

HEADER: E_SHNUM_NON_ZERO A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_shoff member equals zero its e_shnum member shall
equal zero.

HEADER: E_SHNUM_ZERO A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_shoff member does not equal zero its e_shnum member
shall not equal zero.

HEADER: E_SHOFF_MISALIGNED A: Syn
 SVR4 ABI: 4. Data Representation

The ELF header’s e_shoff member shall be 0 or a multiple of 4.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 31

A Assertions
OFVPPC Assertions

HEADER: E_SHOFF_TOO_SMALL A: Syn SVR4 ABI: 4. Header
The ELF header’s e_shoff member shall equal zero or a value greater than
or equal to its e_ehsize member.

HEADER: E_SHOFF_ZERO_FOR_FOR_ET_REL A: Syn
 SVR4 ABI: 4. Introduction: File Format

If the ELF header’s e_type member equals ET_REL (1) the value of its
e_shoff member shall not equal zero.

HEADER: E_SHSTRNDX_TOO_BIG A: Syn SVR4 ABI: 4. Header
If the ELF file header’s e_shstrndx member is not SHN_UNDEF it shall be <=
the ELF file header’s e_shnum member.

HEADER: E_TYPE_INVALID A: Syn SVR4 ABI: 4. Header
The ELF header’s e_type member shall be one of the following:

 Name Value
 --------- ------
 ET_NONE 0
 ET_REL 1
 ET_EXEC 2
 ET_CORE 4
 ET_LOPROC 0xff00
 ...
 ET_HIPROC 0xffff

HEADER: E_VERSION_INVALID A: Syn SVR4 ABI: 4. Header
The ELF header’s e_version member shall equal EV_CURRENT (1).

HEADER: PROGRAM_HEADER_BEYOND_EOF A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_phoff member does not equal zero the result of
(e_phoff + (e_phnum * e_phentsize)) shall equal a value not greater than
the size, in bytes, of the file.

HEADER: SECTION_HEADER_BEYOND_EOF A: Syn SVR4 ABI: 4. Header
If the ELF header’s e_shoff member does not equal zero the result of
(e_shoff + (e_shnum * e_shentsize)) shall equal a value not greater than
the size, in bytes, of the file.

ELF Program Header

PROGHDR: PT_LOAD_SEGMENTS_OUT_OF_ORDER A: Syn SVR4 ABI: 5. Program Header
Segment entries in the program header with p_type equal PT_LOAD shall
appear in ascending order, sorted on the p_vaddr member.

PROGHDR: PT_PHDR_E_PHOFF_INVALID A: Syn SVR4 ABI: 5. Program Header
If a program header entry’s p_type member equals PT_PHDR (6) the entry
shall specify the segment containing the program header table.

PROGHDR: PT_PHDR_FOLLOWS_PT_LOAD A: Syn SVR4 ABI: 5. Program Header

A Assertions
OFVPPC Assertions

32 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

A program header entry whose p_type member equals PT_PHDR (3) shall
precede all other entries with p_type member equal to PT_LOAD (1).

PROGHDR: PT_PHDR_MORE_THAN_ONE A: Syn SVR4 ABI: 5. Program Header
A program header shall contain no more than one entry whose p_type member
equals PT_PHDR (3).

PROGHDR: P_ALIGN_INVALID A: Syn SVR4 ABI: 5. Program Header
A program header entry’s p_align member shall equal 0 or 1, or a positive
integral power of 2.

PROGHDR: P_FILESZ_P_MEMSZ_INCONSISTENT A: Syn SVR4 ABI: 5. Program Header
If a program header entry’s p_type member equals PT_LOAD (1) the entry’s
p_filesz member shall be less than or equal to its p_memsz member.

PROGHDR: P_FLAGS_INVALID A: Syn SVR4 ABI: 5. Program Header
Bits 3 through 27 of a program header entry’s p_flags member shall equal
zero.

PROGHDR: P_OFFSET_TOO_SMALL A: Syn SVR4 ABI: 5. Program Header
A program header entry’s p_offset member shall equal a value greater than
or equal to the ELF header’s e_ehsize member.

PROGHDR: P_TYPE_INVALID A: Syn SVR4 ABI: 5. Program Header
The ELF program header’s p_type member shall be one of the following:

 Name Value
 --------- ----------
 PT_NULL 0
 PT_LOAD 1
 PT_NOTE 4
 PT_PHDR 6
 PT_LOPROC 0x70000000
 ...
 PT_HIPROC 0x7fffffff

PROGHDR: P_VADDR_OR_P_OFFSET_INVALID A: Syn SVR4 ABI: 5. Program Header
If its p_align member is greater than 1 the value of a program header
entry’s p_vaddr member shall equal its p_offset member modulo its p_align
member.

PROGHDR: SEGMENT_BEYOND_EOF A: Syn SVR4 ABI: 5. Program Header
A program header entry’s (p_filesz + p_offset) members shall be less than
or equal to the size of the file in bytes.

ELF “.rela*” Section

RELOC: REL_TAGS_R_OFFSET_INVALID A: Syn
 SVR4 ABI PPC: 4. Special Sections

The r_offset field of each entry in the ".rel.tags" section shall be
divisible bythe size of each entry in the associated ".tags" section = 8.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 33

A Assertions
OFVPPC Assertions

RELOC: REL_TAGS_R_OFFSET_TOO_BIG A: Syn
 SVR4 ABI PPC: 4. Special Sections

The r_offset field of each entry in the ".rel.tags" section shall not be
larger than the size of the associated ".tags" section.

RELOC: R_OFFSET_TOO_BIG_RELOCATABLE A: Syn SVR4 ABI: 4. Relocation
The r_offset member of a relocation record in a relocatable file
(Elf_Hdr.e_type equal ET_REL) shall be less than the size in bytes of the
segment to which the relocation applies.

RELOC: R_SYM_TOO_BIG A: Syn SVR4 ABI: 4. Relocation
The ELF32_R_SYM value (the most significant 24 bits of a relocation table
entry’s r_info member) shall equal a value less than the number of entries
in the corresponding symbol table.

RELOC: R_TYPE_INVALID A: Syn
 PPC EABI: 4. Relocation Types

The following relocation types shall be supported:

 Name Value
 --------------------- -----
 R_PPC_NONE 0
 R_PPC_ADDR32 1
 R_PPC_ADDR24 2
 R_PPC_ADDR16 3
 R_PPC_ADDR16_LO 4
 R_PPC_ADDR16_HI 5
 R_PPC_ADDR16_HA 6
 R_PPC_ADDR14 7
 R_PPC_ADDR14_BRTAKEN 8
 R_PPC_ADDR14_BRNTAKEN 9
 R_PPC_REL24 10
 R_PPC_REL14 11
 R_PPC_REL14_BRTAKEN 12
 R_PPC_REL14_BRNTAKEN 13
 R_PPC_RELATIVE 22
 R_PPC_UADDR32 24
 R_PPC_UADDR16 25
 R_PPC_REL32 26
 R_PPC_SDAREL16 32
 R_PPC_SECTOFF 33
 R_PPC_SECTOFF_LO 34
 R_PPC_SECTOFF_HI 35
 R_PPC_SECTOFF_HA 36
 R_PPC_EMB_NADDR32 101
 R_PPC_EMB_NADDR 102
 R_PPC_EMB_NADDR16_LO 103
 R_PPC_EMB_NADDR16_HI 104
 R_PPC_EMB_NADDR16_HA 105
 R_PPC_EMB_SDAI16 106
 R_PPC_EMB_SDA2I16 107
 R_PPC_EMB_SDA2REL 108

A Assertions
OFVPPC Assertions

34 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

 R_PPC_EMB_SDA21 109
 R_PPC_EMB_MRKREF 110
 R_PPC_EMB_RELSEC16 111
 R_PPC_EMB_RELST_LO 112
 R_PPC_EMB_RELST_HI 113
 R_PPC_EMB_RELST_HA 114
 R_PPC_EMB_BIT_FLD 115
 R_PPC_EMB_RELSDA 116

ELF Section Header Table

SECTBL: E_SHSTRNDX_NEEDS_SHT_STRTAB A: Syn SVR4 ABI: 4. Sections
The ELF header’s e_shstrndx member shall contain zero or a valid section
header index to a section whose sh_type member equals SHT_STRTAB (3).

SECTBL: INITIAL_HEADER_NON_ZERO A: Syn SVR4 ABI: 4. Sections
Each member in the initial section header table entry shall equal zero.

SECTBL: SECTION_OVERLAP A: Syn SVR4 ABI: 4. Sections
Sections shall not overlap (sections with sh_type member equal to
SHT_NOBITS (8) or with an sh_size value of 0 are ignored), nor shall any
section overlap the ELF header, the section table, or the program header
(if present).

SECTBL: SECTION_OVERLAPS A: Syn SVR4 ABI: 4. Sections
Sections shall not overlap (sections with sh_type member equal to
SHT_NOBITS (8) or with an sh_size value of 0 are ignored).

SECTBL: SECTION_OVERLAPS_ELF_HEADER A: Syn SVR4 ABI: 4. Sections
A section shall not overlap the ELF Header.

SECTBL: SECTION_OVERLAPS_PROGRAM_HEADER A: Syn SVR4 ABI: 4. Sections
A section shall not overlap the Program Header.

SECTBL: SECTION_OVERLAPS_SECTION_TABLE A: Syn SVR4 ABI: 4. Sections
A section shall not overlap the Section Table.

SECTBL: SECTION_TABLE_BEYOND_EOF A: Syn SVR4 ABI: 4: Sections
A section header table entry’s (sh_offset + sh_size) members shall
contain a value less than the size of the file in bytes.

SECTBL: SHT_RELA_MISALIGNED A: Syn
 SVR4 ABI: 4. Data Representation

If an ELF section header table entry’s sh_type member equals or SHT_RELA
(4) the entry’s sh_offset member shall be a multiple of 4.

SECTBL: SHT_RELA_SH_ENTSIZE_INVALID A: Syn SVR4 ABI: 4. Sections
If a section header table entry’s sh_type member equals SHT_RELA (4) the
entry’s sh_entsize member shall equal sizeof (Elf32_Rela) = 12.

SECTBL: SHT_RELA_SH_INFO_INVALID A: Syn SVR4 ABI: 4. Sections

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 35

A Assertions
OFVPPC Assertions

If a section header table entry’s sh_type member equals SHT_RELA (4) the
entry’s sh_info member shall contain a valid section header table index.

SECTBL: SHT_RELA_SH_LINK_INVALID A: Syn SVR4 ABI: 4. Sections
If a section header table entry’s sh_type member equals SHT_RELA (4) the
entry’s sh_link member shall contain a valid section header table index to
a section header table entry whose sh_type member equals SHT_SYMTAB (2).

SECTBL: SHT_REL_UNEXPECTED A: Sem SVR4 ABI: 4. Sections
An executable file shall not contain a section table entry with an sh_type
field equal to SHT_RELA.

SECTBL: SHT_SYMTAB_MISALIGNED A: Syn
 SVR4 ABI: 4. Data Representation

If a section header table entry’s sh_type member equals SHT_SYMTAB (2) and
the entry’s sh_offset member does not equal zero the value of its
sh_offset member shall be a multiple of 4.

SECTBL: SHT_SYMTAB_MORE_THAN_ONE A: Syn SVR4 ABI: 4. Sections
An ELF object file shall have no more than one section header table entry
whose sh_type member equals SHT_SYMTAB (2).

SECTBL: SHT_SYMTAB_SH_ENTSIZE_INVALID A: Syn SVR4 ABI: 4: Sections
If a section header table entry’s sh_type member equals SHT_SYMTAB the
value of its sh_entsize member shall be sizeof (Elf32_Sym) = 16

SECTBL: SHT_SYMTAB_WITH_NO_SHT_STRTAB A: Syn SVR4 ABI: 4. Sections
If a section header table entry’s sh_type member equals SHT_SYMTAB (2) the
entry’s sh_link member shall equal a valid section header table index to a
section header table entry whose sh_type member equals SHT_STRTAB (3).

SECTBL: SH_ADDRALIGN_INVALID A: Syn SVR4 ABI: 4: Sections
A section header table entry’s sh_addralign member shall equal 0 or 1, or
a positive integral power of 2.

SECTBL: SH_ENTSIZE_NOT_ZERO A: Syn SVR4 ABI: 4: Sections
A section header table entry’s sh_entsize member shall equal zero unless
the sh_type member equals one of the following:

 Name Value
 ----------- ----------
 SHT_RELA 4
 SHT_SYMTAB 2
 SHT_ORDERED 0x7fffffff

SECTBL: SH_FLAGS_HAS_INVALID_BITS A: Syn SVR4 ABI: 4: Sections
Bits 3 through 27 of a section header table entry’s sh_flags member shall
equal zero.

SECTBL: SH_INFO_NOT_ZERO A: Syn SVR4 ABI: 4: Sections
A section header table entry’s sh_info member shall equal zero unless the
sh_type member equals one of the following:

A Assertions
OFVPPC Assertions

36 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

 Name Value
 ----------- ----------
 SHT_RELA 4
 SHT_SYMTAB 2
 SHT_ORDERED 0x7fffffff

SECTBL: SH_LINK_NOT_ZERO A: Syn SVR4 ABI: 4: Sections
A section header table entry’s sh_link member shall equal zero unless the
sh_type member equals one of the following:

 Name Value
 ----------- ----------
 SHT_RELA 4
 SHT_SYMTAB 2
 SHT_ORDERED 0x7fffffff

SECTBL: SH_NAME_TOO_BIG A: Syn SVR4 ABI: 4: Sections
If the file contains a section name string table (the ELF header’s
e_shstrndx is non-zero) then the sh_name member of a section header table
entry shall be <= the size of the section name string table as given by
the sh_size member of section header table entry for the section name
string table.

SECTBL: SH_OFFSET_ZERO_WITH_SH_SIZE A: Syn SVR4 ABI: 4: Sections
If a section header table entry’s sh_type member does not equal SHT_NOBITS
(8) and the entry’s sh_size member does not equal zero its sh_offset
member shall not equal zero.

SECTBL: SH_TYPE_INVALID A: Syn SVR4 ABI: 4. Sections
A section header table entry’s sh_type member shall equal one of the
following values:

 Name Value
 ------------ ----------
 SHT_NULL 0
 SHT_PROGBITS 1
 SHT_SYMTAB 2
 SHT_STRTAB 3
 SHT_RELA 4
 SHT_NOTE 7
 SHT_NOBITS 8
 SHT_LOPROC 0x70000000
 ...
 SHT_ORDERED 0x7fffffff
 SHT_HIPROC 0x7fffffff
 SHT_LOUSER 0x80000000
 ...
 SHT_HIUSER 0xffffffff

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 37

A Assertions
OFVPPC Assertions

ELF Section Header Table - Special Sections

SPECSEC: DWARF_MISSING A: Sem
 PPC EABI: 3: DWARF Definition

A file which is compiled with debugging information shall contain DWARF
1.0.3 sections.

SPECSEC: NOTE_SH_SIZE_INVALID A: Syn SVR4 ABI: 4. Sections
A section header table entry having an sh_name member referencing a string
equal to ‘.note’ shall have an sh_size member divisible by four.

SPECSEC: PCC_EMB_SECTIONS_TOO_BIG A: Syn
 PPC EABI: 4. Special Sections

The sum of the sh_size members of the sections with section header table
entries having sh_name members referencing strings equal to
".PPC.EMB.sbss0" and ".PPC.EMB.sdata0" shall not exceed 64K bytes.

SPECSEC: PPC_EMB_SBSS0_MORE_THAN_ONE A: Syn
 PPC EABI: 4. Special Sections

A file shall not contain more than one section header table entry having
an sh_name member referencing a string equal to ".PPC.EMB.sbss0".

SPECSEC: PPC_EMB_SDATA0_MORE_THAN_ONE A: Syn
 PPC EABI: 4. Special Sections

A file shall not contain more than one section header table entry having
an sh_name member referencing a string equal to ".PPC.EMB.sdata0".

SPECSEC: PPC_EMB_SEGINFO_MISALIGNED A: Syn SVR4 ABI PPC: 4. Sections
A section header table entry having an sh_name member referencing a string
equal to ".PPC.EMB.seginfo" shall have an sh_addralign member equal to 0.

SPECSEC: REL_TAGS_SH_INFO_NOT_TAGS A: Syn SVR4 ABI PPC: 4. Sections
A section header table entry having an sh_name member referencing a string
equal to ".rel.tags" shall have an sh_info member containing the section
index of the associated ".tags" section.

SPECSEC: REL_TAGS_SH_LINK_NOT_TAGSYM A: Syn SVR4 ABI PPC: 4. Sections
A section header table entry having an sh_name member referencing a string
equal to ".rel.tags" shall have an sh_link member containing the section
index of the associated ".tagsym" section.

SPECSEC: SBSS2_MORE_THAN_ONE A: Syn
 PPC EABI: 4. Special Sections

A file shall not contain more than one section header table entry having
an sh_name member referencing a string equal to ".sbss2".

SPECSEC: SBSS2_PLUS_SDATA2_TOO_BIG A: Syn
 PPC EABI: 4. Special Sections

The sum of the sh_size members of the sections with section header table
entries having sh_name members referencing strings equal to ".sbss2" and
".sdata2" shall not exceed 64K bytes.

A Assertions
OFVPPC Assertions

38 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

SPECSEC: SDATA2_MORE_THAN_ONE A: Syn
 PPC EABI: 4. Special Sections

A file shall not contain more than one section header table entry having
an sh_name member referencing a string equal to ".sdata2".

SPECSEC: SHT_SYMTAB_MISSING A: Sem PPC EABI: DWARF Definition
A file which is compiled with debugging information shall contain a
section table entry with an sh_type value equal SHT_SYMTAB.

SPECSEC: SH_FLAGS_FOR_BSS A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".bss" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_COMMENT A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".comment" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to zero.

SPECSEC: SH_FLAGS_FOR_DATA A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".data" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_DATA1 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".data1" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_DEBUG A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".debug" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to zero

SPECSEC: SH_FLAGS_FOR_DEBUG_ARANGES A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".debug_aranges" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to zero

SPECSEC: SH_FLAGS_FOR_DEBUG_PUBNAMES A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".debug_pubnames" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to zero

SPECSEC: SH_FLAGS_FOR_FINI A: Syn

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 39

A Assertions
OFVPPC Assertions

 SVR4 ABI: 4. Special Sections
A section header table entry having an sh_name member referencing a string
equal to ".fini" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to SHF_ALLOC (2) + SHF_EXECINSTR (4).

SPECSEC: SH_FLAGS_FOR_INIT A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".init" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to SHF_ALLOC (2) + SHF_EXECINSTR (4).

SPECSEC: SH_FLAGS_FOR_NOTE A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".note" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to zero.

SPECSEC: SH_FLAGS_FOR_PPC_EMB_SBSS0 A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".PPC.EMB.sbss0" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_PPC_EMB_SDATA0 A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".PPC.EMB.sdata0" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_PPC_EMB_SEGINFO A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".PPC.EMB.seginfo" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to zero.

SPECSEC: SH_FLAGS_FOR_RELA A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".rela*" shall have standard attributes (sh_flags &
~SHF_MASKPROC) that include the SHF_ALLOC (2) if the file has a loadable
segment that includes relocation, otherwise the bit will be off.

SPECSEC: SH_FLAGS_FOR_REL_TAGS A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".rel.tags" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_EXCLUDE (0x80000000).

SPECSEC: SH_FLAGS_FOR_RODATA A: Syn
 SVR4 ABI: 4. Special Sections

A Assertions
OFVPPC Assertions

40 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

A section header table entry having an sh_name member referencing a string
equal to ".rodata" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2).

SPECSEC: SH_FLAGS_FOR_RODATA1 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".rodata1" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2).

SPECSEC: SH_FLAGS_FOR_SBSS A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sbss" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_SBSS2 A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sbss2" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_SDATA A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sdata" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_SDATA2 A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sdata2" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_ALLOC (2) or SHF_ALLOC (2) + SHF_WRITE (1).

SPECSEC: SH_FLAGS_FOR_SHSTRTAB A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".shstrtab" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to zero.

SPECSEC: SH_FLAGS_FOR_STRTAB A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".strtab" shall have standard attributes (sh_flags &
~SHF_MASKPROC) that include the SHF_ALLOC (2) if the file has a loadable
segment that includes the symbol string table, otherwise the bit will be
off.

SPECSEC: SH_FLAGS_FOR_SYMTAB A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".symtab" shall have standard attributes (sh_flags &

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 41

A Assertions
OFVPPC Assertions

~SHF_MASKPROC) that include the SHF_ALLOC (2) if the file has a loadable
segment that includes the symbol table, otherwise the bit will be off.

SPECSEC: SH_FLAGS_FOR_TAGS A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".tags" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to SHF_ALLOC (2).

SPECSEC: SH_FLAGS_FOR_TAGSYM A: Syn
 SVR4 ABI PPC: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".tagsym" shall have standard attributes (sh_flags &
~SHF_MASKPROC) equal to SHF_EXCLUDE (0x80000000).

SPECSEC: SH_FLAGS_FOR_TEXT A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".text" shall have standard attributes (sh_flags & ~SHF_MASKPROC)
equal to SHF_ALLOC (2) + SHF_EXECINSTR (4).

SPECSEC: SH_TYPE_FOR_BSS A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".bss" shall have an sh_type member equal to SHT_NOBITS (8).

SPECSEC: SH_TYPE_FOR_COMMENT A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".comment" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_DATA A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".data" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_DATA1 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".data1" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_DEBUG A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".debug" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_DEBUG_ARANGES A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".debug_aranges" shall have an sh_type member equal to
SHT_PROGBITS (1).

A Assertions
OFVPPC Assertions

42 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

SPECSEC: SH_TYPE_FOR_DEBUG_PUBNAMES A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".debug_pubnames" shall have an sh_type member equal to
SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_FINI A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".fini" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_INIT A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".init" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_LINE A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".line" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_NOTE A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".note" shall have an sh_type member equal to SHT_NOTE (7).

SPECSEC: SH_TYPE_FOR_PPC_EMB_SBSS0 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".PPC.EMB.sbss0" shall have an sh_type member equal to SHT_NOBITS
(8).

SPECSEC: SH_TYPE_FOR_PPC_EMB_SDATA0 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".PPC.EMB.sdata0" shall have an sh_type member equal to
SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_PPC_EMB_SEGINFO A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".PPC.EMB.seginfo" shall have an sh_type member equal to
SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_RELA A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".rela" shall have an sh_type member equal to SHT_RELA (4).

SPECSEC: SH_TYPE_FOR_REL_TAGS A: Syn
 SVR4 ABI: 4. Special Sections

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 43

A Assertions
OFVPPC Assertions

A section header table entry having an sh_name member referencing a string
equal to ".rel.tags" shall have an sh_type member equal to SHT_REL (9).

SPECSEC: SH_TYPE_FOR_RODATA A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".rodata" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_RODATA1 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".rodata1" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_SBSS A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sbss" shall have an sh_type member equal to SHT_NOBITS (8).

SPECSEC: SH_TYPE_FOR_SBSS2 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sbss2" shall have an sh_type member equal to SHT_NOBITS (8).

SPECSEC: SH_TYPE_FOR_SDATA A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sdata" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_SDATA2 A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".sdata2" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: SH_TYPE_FOR_SHSTRTAB A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".shstrtab" shall have an sh_type member equal to SHT_STRTAB (3).

SPECSEC: SH_TYPE_FOR_STRTAB A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".strtab" shall have an sh_type member equal to SHT_STRTAB (3).

SPECSEC: SH_TYPE_FOR_SYMTAB A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".symtab" shall have an sh_type member equal to SHT_SYMTAB (2).

SPECSEC: SH_TYPE_FOR_TAGS A: Syn
 SVR4 ABI: 4. Special Sections

A Assertions
OFVPPC Assertions

44 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

A section header table entry having an sh_name member referencing a string
equal to ".tags" shall have an sh_type member equal to SHT_ORDERED
(0x7fffffff).

SPECSEC: SH_TYPE_FOR_TAGSYM A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".tagsym" shall have an sh_type member equal to SHT_SYMTAB (2).

SPECSEC: SH_TYPE_FOR_TEXT A: Syn
 SVR4 ABI: 4. Special Sections

A section header table entry having an sh_name member referencing a string
equal to ".text" shall have an sh_type member equal to SHT_PROGBITS (1).

SPECSEC: TAGSYM_IN_WRONG_FILE_TYPE A: Syn SVR4 ABI PPC: 4. Sections
A section header table entry having an sh_name member referencing a string
equal to ".tagsym" shall appear only in an object file (a file with an ELF
header e_type member equal to ET_REL (1)).

SPECSEC: TAGS_MISALIGNED A: Syn SVR4 ABI PPC: 4. Sections
A section header table entry having an sh_name member referencing a string
equal to ".tags" shall have an sh_addralign member equal to 4.

ELF ".strtab" Section

STRTBL: FIRST_BYTE_NULL A: Syn SVR4 ABI: 4. String Table
The first byte of a string table section shall equal a null character.

STRTBL: STRING_TABLE_MISALIGNED A: Syn SVR4 ABI: 4. String Table
If a section header table entry’s sh_type member equals SHT_STRTAB (3) and
the entry’s sh_offset member does not equal zero the value of its
sh_offset member shall be a multiple of 4.

STRTBL: UNTERMINATED_STRING A: Syn SVR4 ABI: 4. String Table
The last byte of a string table section (at an offset in the file equal to
the section header table entry’s sh_offset member + the entry’s sh_size
member - 1) shall equal a null character.

ELF ".symtab" Section

SYMTBL: BINDING_WRONG A: Sem SVR4 ABI: 4. Symbol Table
The binding of an object in the ELF symbol table, as given by its
ELF32_ST_BIND value shall match that of the type of the corresponding
object in the C source -- an STB_GLOBAL or STB_WEAK symbol shall
correspond to a C source object which is externally visible outside the
source file and an STB_LOCAL symbol shall correspond to a C source object
which is not externally visible (is "static" or local).

SYMTBL: FILE_NAME_WRONG A: Sem SVR4 ABI: 4. Symbol Table

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 45

A Assertions
OFVPPC Assertions

The name given by a symbol table entry having an ELF32_ST_TYPE value (the
lower four bits of its st_info member) equal to STT_FILE (4) shall be that
of the source file associated with the object file.

SYMTBL: FIRST_ENTRY_NON_ZERO A: Syn SVR4 ABI: 4. Symbol Table
Each member of the initial entry in the symbol table entry shall equal
zero.

SYMTBL: FUNCTION_UNEPXECTED A: Sem SVR4 ABI: 4. Symbol Table
An entry in the symbol table having an ELF32_ST_TYPE value equal to
STT_FUNC shall correspond to a function included in the corresponding C
source code with a name which matches after prepending one underscore to
the name from the source.

SYMTBL: GLOBAL_FUNCTION_TYPE_WRONG A: Sem SVR4 ABI: 4. Symbol Table
A global function in the source shall have a corresponding entry in the
symbol table with an ELF32_ST_BIND value of STB_FUNC.

SYMTBL: GLOBAL_NAME_MISSING A: Sem SVR4 ABI: 4. Symbol Table
A global name in the source shall have a corresponding entry in the symbol
table.

SYMTBL: GLOBAL_OBJECT_TYPE_WRONG A: Sem SVR4 ABI: 4. Symbol Table
A global data object in the source shall have a corresponding entry in the
symbol table with an ELF32_ST_BIND value of STB_GLOBAL or STB_WEAK.

SYMTBL: LOCAL_NAME_MISSING A: Sem SVR4 ABI: 4. Symbol Table
A function or statically allocated data object which is not externally
visible outside a module shall have a corresponding entry in the symbol
table with an ELF32_ST_BIND value of STB_LOCAL.

SYMTBL: OBJECT_UNEPXECTED A: Sem SVR4 ABI: 4. Symbol Table
An entry in the symbol table having an ELF32_ST_TYPE value equal to
STT_OBJECT shall correspond to a data object included in the corresponding
C source code with a name which matches after prepending one underscore to
the name from the source.

SYMTBL: SHT_SYMTAB_SH_INFO_INVALID A: Syn SVR4 ABI: 4. Sections
If a section header table entry’s sh_type member equals SHT_SYMTAB (2) the
entry’s sh_info member shall be one greater than the symbol table index of
the last local symbol (binding STB_LOCAL).

SYMTBL: SIZE_WRONG A: Sem SVR4 ABI: 4. Symbol Table
If the size of an object in the C source code can be determined, then the
st_size member of the entry in the symbol table for that object shall
equal that value.

SYMTBL: STB_LOCAL_FOLLOWS_STB_GLOBAL A: Syn SVR4 ABI: 4. Symbol Table
A symbol table entry having its ELF32_ST_BIND value (the upper four bits
of its st_info member) equal to STB_LOCAL (0) shall precede every symbol
table entry with an ELF32_ST_BIND value equal STB_WEAK (2) or STB_GLOBAL
(1).

A Assertions
OFVPPC Assertions

46 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

SYMTBL: STT_FILE_HAS_WRONG_ST_BIND A: Syn SVR4 ABI: 4. Symbol Table
If the ELF32_ST_TYPE value of an ELF symbol table entry (the lower four
bits of its st_info member) equal STT_FILE (4), then its ELF32_ST_BIND
value (the upper four bits of its st_info member) shall equal STB_LOCAL
(0).

SYMTBL: STT_FILE_HAS_WRONG_ST_SHNDX A: Syn SVR4 ABI: 4. Symbol Table
If the ELF32_ST_TYPE value of an ELF symbol table entry (the lower four
bits of its st_info member) equal STT_FILE (4), then its st_shndx member
shall equal SHN_ABS (0xfff1).

SYMTBL: ST_BIND_INVALID A: Syn SVR4 ABI: 4. Symbol Table
The ELF32_ST_BIND value of a symbol table entry (the upper four bits of
its st_info member) shall be one of the following:

 Name Value
 ---------- -----
 STB_LOCAL 0
 STB_GLOBAL 1
 STB_WEAK 2
 STB_LOPROC 13
 ...
 STB_HIPROC 15

SYMTBL: ST_OTHER_INVALID A: Syn SVR4 ABI: 4. Symbol Table
A symbol table entry’s st_other member shall equal zero.

SYMTBL: ST_SHNDX_TOO_BIG A: Syn SVR4 ABI: 4. Symbol Table
If a symbol table entry’s st_shndx member is less than SHN_LORESERVE
(0xff00) its st_shndx member shall be less than the ELF header’s sh_shnum
member.

SYMTBL: ST_TYPE_INVALID A: Syn SVR4 ABI: 4. Symbol Table
The ELF32_ST_TYPE value of a symbol table entry (the lower four bits of
its st_info member) shall be one of the following:

 Name Value
 ----------- -----
 STT_NOTYPE 0
 STT_OBJECT 1
 STT_FUNC 2
 STT_SECTION 3
 STT_FILE 4
 STT_LOPROC 13
 ...
 STT_HIPROC 15

SYMTBL: SYMBOL_TABLE_MISALIGNED A: Syn
 SVR4 ABI: 4. Data Representation

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 47

A Assertions
OFVPPC Assertions

If a section header table entry’s sh_type member equals SHT_SYMTAB (2) and
the entry’s sh_offset member does not equal zero the value of its
sh_offset member shall be a multiple of 4.

SYMTBL: TAGSYM_ST_BIND_WRONG A: Syn
 SVR4 ABI PPC: 4: Special Sections

The ELF32_ST_BIND value of an entry in the ".tagsym" section shall be
STB_LOCAL.

SYMTBL: TAGSYM_ST_TYPE_WRONG A: Syn
 SVR4 ABI PPC: 4: Special Sections

The ELF32_ST_TYPE value of an entry in the ".tagsym" section shall be
ST_NOTYPE.

SYMTBL: _SDA2_BASE_MISSING A: Syn
 PPC EABI: 4. Special Sections

There shall be a symbol table entry for the symbol "_SDA2_BASE_".

SYMTBL: _SDA2_BASE_NON_ZERO A: Syn
 PPC EABI: 4. Special Sections

A file which does not have a section header table entry having an sh_name
member referencing strings equal to either ".sbss2" or ".sdata2" shall
have a symbol table entry with an st_name member referencing a string
equal to "_SDA2_BASE_" and with an st_value member of zero.

SYMTBL: _SDA2_BASE_TOO_FAR_AWAY A: Syn
 PPC EABI: 4. Special Sections

A file which has section header table entries having sh_name members
referencing strings equal to either ".sbss2" or ".sdata2" shall have a
symbol table entry with an st_name member referencing a string equal to
"_SDA2_BASE_" and with st_value such that the address of any byte in
".sbss2" or ".sdata2" is within a 16-bit signed offset of "_SDA2_BASE_".

ELF ".tags" Section

<To be supplied>

".debug" Section

DEBUG: ABSTRACT_PARAMETER_HAS_LOCATION A: Syn DWARF 1: 3.3.6
The children which describe the parameters of a TAG_global_subroutine or
TAG_subroutine entry which is an abstract declaration of an inlined
subroutine shall not have location descriptions.

DEBUG: ARRAY_BYTE_SIZE_WRONG C: Sem DWARF 1: 3.8.3
If a TAG_array_type debugging information entry has a AT_byte_size
attribute, then the value of that attribute shall be the size of the
entire array as determined statically at compile-time.

DEBUG: ARRAY_DIMENSION_MISSING A: Syn DWARF 1: 3.8.3

A Assertions
OFVPPC Assertions

48 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

The AT_subscr_data attribute in a TAG_array_type debugging information
entry shall contain a data item specifying a dimension for each dimension
of the array as specified in the source code.

DEBUG: ARRAY_DIMENSION_WRONG A: Sem DWARF 1: 3.8.3
The upper bound part of the data item in an AT_subcr_data attribute
describing a dimension of an array shall match the dimension given in the
source code.

DEBUG: ARRAY_ELEMENT_FORMAT_CODE_BAD A: Syn DWARF 1: 3.8.3
The format specifier for the element type of a TAG_array_type debugging
information entry shall be FMT_ET (0x8).

DEBUG: ARRAY_ELEMENT_TYPE_WRONG A: Sem DWARF 1: 3.8.3
The type attribute for the element type of a TAG_array_type debugging
information entry shall specify a type matching the element type specified
in the source code.

DEBUG: ARRAY_FORMAT_SPECIFIER_BAD_CODE A: Syn DWARF 1: 3.8.8
The format specifier contained in the data element of an AT_subscr_data
attribute describing an array dimension shall be one of the following:

 Name Value
 ---------- -----
 FMT_FT_C_C 0x0
 FMT_FT_C_X 0x1
 FMT_FT_X_C 0x2
 FMT_FT_X_X 0x3
 FMT_UT_C_C 0x4
 FMT_UT_C_X 0x5
 FMT_UT_X_C 0x6
 FMT_UT_X_X 0x7
 FMT_ET 0x8

DEBUG: ARRAY_LOWER_BOUND_NON_ZERO C: Syn DWARF 1: 3.8.3
An AT_subscr_data attribute specifying a lower bound for an array shall
have the value zero.

DEBUG: ARRAY_STRIDE_SIZE_MISSING A: Sem DWARF 1: 3.8.3
If the amount of storage allocated to hold each element of an array is
different from the amount of storage that is normally allocated to hold an
object of the indicated element type, then the array type entry shall have
an AT_stride_size attribute to provide the size in bits of each element of
the array.

DEBUG: ARRAY_STRIDE_SIZE_WRONG A: Sem DWARF 1: 3.8.3
If the amount of storage allocated to hold each element of an array is
different from the amount of storage that is normally allocated to hold an
object of the indicated element type, then the array type entry shall have
an AT_stride_size attribute with a constant value equal to the size in
bits of each element of the array.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 49

A Assertions
OFVPPC Assertions

DEBUG: ARRAY_SUBSCRIPTS_MISSING A: Syn DWARF 1: 3.8.3
Every TAG_array_type debugging information entry shall have an
AT_subscr_data attribute to specify the array subscripts and element data
type.

DEBUG: ARRAY_TYPE_MISSING A: Syn DWARF 1: 3.8.1
A TAG_array_type debugging information entry shall have a AT_subscr_data
attribute to specify its dimensions and the type of its elements.

DEBUG: AT_BIT_OFFSET_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_bit_offset shall have format encoding FORM_DATA2 (0x5).

DEBUG: AT_BIT_SIZE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_bit_size shall have format encoding FORM_DATA4 (0x6).

DEBUG: AT_BYTE_SIZE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_byte_size shall have format encoding FORM_DATA4 (0x6).

DEBUG: AT_COMMON_REFERENCE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_common_reference shall be have form encoding FORM_REF (0x2).

DEBUG: AT_COMP_DIR_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_comp_dir shall have format encoding FORM_STRING (0x8).

DEBUG: AT_CONST_VALUE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_const_value shall have format encoding FORM_STRING (0x8),
BLOCK2 (0x3), FORM_BLOCK4 (0x4), FORM_DATA2 (0x5), FORM_DATA4 (0x6), or
FORM_DATA8 (0x7).

DEBUG: AT_CONTAINING_TYPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_containing_type shall have format encoding FORM_REF (0x2).

DEBUG: AT_DEFAULT_VALUE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_default_value shall have format encoding FORM_ADDR (0x10),
FORM_DATA2 (0x4), FORM_DATA8 (0x7), or FORM_STRING (0x8).

DEBUG: AT_DISCR_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_discr shall have format encoding FORM_REF (0x2).

DEBUG: AT_DISCR_VALUE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_discr_value shall have input FORM_BLOCK2 (0x3).

DEBUG: AT_ELEMENT_LIST_TYPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_element_list_type shall have format encoding FORM_BLOCK4 (0x4)

DEBUG: AT_FRIENDS_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_friends shall have format encoding FORM_BLOCK2 (0x3).

DEBUG: AT_FUND_TYPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_fund_type shall have format encoding FORM_DATA2 (0x5)

DEBUG: AT_HIGH_PC_FORM_BAD A: Syn DWARF 1: 4.4

A Assertions
OFVPPC Assertions

50 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Attribute AT_high_pc shall have format encoding FORM_ADDR (0x1)

DEBUG: AT_INLINE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_inline shall have format encoding FORM_STRING (0x8).

DEBUG: AT_IS_OPTIONAL_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_is_optional shall have format encoding FORM_STRING (0x8).

DEBUG: AT_LANGUAGE_BAD C: Syn DWARF 1: 3.1: 5.
If a TAG_compile_unit entry has an AT_language attribute then that
attribute shall have the value LANG_C or LANG_C89.

DEBUG: AT_LANGUAGE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_language shall have format encoding FORM_DATA4 (0x6).

DEBUG: AT_LOCATION_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_location shall have format encoding FORM_BLOCK2 (0x3).

DEBUG: AT_LOWER_BOUND_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_lower_bound shall have format encoding FORM_DATA2 (0x5),
FORM_DATA4 (0x6), FORM_DATA8 (0x7), or FORM_REF (0x2).

DEBUG: AT_LOW_PC_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_low_pc shall have format encoding FORM_ADDR (0x1)

DEBUG: AT_MEMBER_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_member shall have format encoding FORM_REF (0x2)

DEBUG: AT_MOD_FUND_TYPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_mod_fund_type shall have format encoding FORM_BLOCK2 (0x3)

DEBUG: AT_MOD_U_D_TYPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_mod_u_d_type shall have format encoding FORM_BLOCK2 (0x3)

DEBUG: AT_NAME_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_name shall have format encoding FORM_STRING (0x8)

DEBUG: AT_ORDERING_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_ordering shall have format encoding FORM_DATA2 (0x5).

DEBUG: AT_PRIVATE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_private shall have format encoding FORM_STRING (0x8).

DEBUG: AT_PRODUCER_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_producer shall have format encoding FORM_STRING (0x8).

DEBUG: AT_PROGRAM_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_program shall have format encoding FORM_STRING (0x8).

DEBUG: AT_PROTECTED_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_protected shall have format encoding FORM_STRING (0x8).

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 51

A Assertions
OFVPPC Assertions

DEBUG: AT_PROTOTYPED_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_prototyped shall have format encoding FORM_STRING (0x8).

DEBUG: AT_PUBLIC_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_public shall have format encoding FORM_STRING (0x8).

DEBUG: AT_PURE_VIRTUAL_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_pure_virtual shall have format encoding FORM_STRING (0x8).

DEBUG: AT_RETURN_ADDR_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_return_addr shall have format encoding FORM_BLOCK2 (0x3).

DEBUG: AT_SIBLING_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_sibling shall have format encoding FORM_REF (0x2).

DEBUG: AT_SPECIFICATION_ADDR_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_specification_addr shall have format encoding FORM_REF (0x2).

DEBUG: AT_START_SCOPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_start_scope shall have format encoding FORM_DATA4 (0x6).

DEBUG: AT_STMT_LIST_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_stmt_list shall have format encoding FORM_DATA4 (0x6).

DEBUG: AT_STRIDE_SIZE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_stride_size shall have format encoding FORM_DATA4 (0x6).

DEBUG: AT_STRING_LENGTH_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_string_length shall have input FORM_BLOCK2 (0x3).

DEBUG: AT_SUBSCR_DATA_TYPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_subscr_data_type shall have format encoding FORM_BLOCK2 (0x3)

DEBUG: AT_UPPER_BOUND_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_upper_bound shall have format encoding FORM_DATA2 (0x5),
FORM_DATA4 (0x6), FORM_DATA8 (0x7), or FORM_REF (0x2).

DEBUG: AT_USER_DEF_TYPE_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_user_def_type shall have format encoding FORM_REF (0x2)

DEBUG: AT_VIRTUAL_FORM_BAD A: Syn DWARF 1: 4.4
Attribute AT_virtual shall have format encoding FORM_STRING (0x8).

DEBUG: BIT_FIELD_BIT_OFFSET_WRONG A: Sem DWARF 1: 3.8.4.2
The AT_bit_offset attribute of a TAG_member entry representing a bit field
of a structure or union shall have a constant value equal to the number of
bits to the left of the leftmost (most significant) bit of that bit field.

DEBUG: BIT_FIELD_BIT_SIZE_WRONG A: Sem DWARF 1: 3.8.4.2
The AT_bit_size attribute of a TAG_member debugging information entry
representing a bit field of a structure or union shall have a constant
value equal to the number of bits occupied by the bit field.

A Assertions
OFVPPC Assertions

52 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

DEBUG: BIT_FIELD_BYTE_SIZE_WRONG A: Sem DWARF 1: 3.8.4.2
If a TAG_member debugging information entry for a bit field has an
AT_byte_size attribute, then the value of that attribute shall be a
constant equal to the number of bytes needed to contain the bit field
(including any necessary padding bits).

DEBUG: BIT_FIELD_REQUIRED_ATTRS A: Syn DWARF 1: 3.8.4.2
If a TAG_member entry for a structure or union member contains either an
AT_bit_offset attribute or an AT_bit_size attribute then the member
represented is a bit field and both attributes shall be present.

DEBUG: CU_MISSING A: Syn DWARF 1: 3.1
At the end of all debugging information entries owned by a compilation
unit shall come either the end of the ".debug" section or another
TAG_compile_unit debugging information entry.

DEBUG: DEBUG_INFO_NOT_TERMINATED A: Syn DWARF 1: 2.3
The ".debug" section shall terminate each sibling chain with a null entry,
thereby completing the tree represented by the debugging information
entries.

DEBUG: DIE_TAG_MISSING A: Syn DWARF 1: 3.1
A debugging information entry shall begin with a tag code that ends before
the end of the section.

DEBUG: ENUMERATION_NAME_WRONG A: Sem DWARF 1: 3.8.5
The TAG_enumeration_type debugging information entry for an enumeration
type having a tag name shall have an AT_name attribute containing the
enumeration tag name as it appears in the source program.

DEBUG: ENUMERATION_SIZE_MISSING A: Syn DWARF 1: 3.8.5
A TAG_enumeration_type debugging information entry shall have an
AT_byte_size attribute.

DEBUG: ENUMERATOR_NAME_MISMATCH A: Sem DWARF 1: 3.8.5
The TAG_enumerator debugging information entries representing the members
of an enumeration shall appear in the same order with the same names (in
the AT_name attribute) as the declarations of the enumeration members in
the source program.

DEBUG: ENUMERATOR_NAME_MISSING A: Syn DWARF 1: 3.8.5
A DW_TAG_enumerator entry representing an enumeration member shall have a
DW_AT_name attribute.

DEBUG: ENUMERATOR_PARENT_WRONG A: Syn DWARF 1: 3.8.5
The TAG_enumerator debugging information entry representing an enumeration
member shall be a child of a TAG_enumeration_type entry representing the
enumeration to which the member belongs.

DEBUG: ENUMERATOR_VALUE_MISSING A: Syn DWARF 1: 3.8.5

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 53

A Assertions
OFVPPC Assertions

A TAG_enumerator entry representing an enumeration member shall have an
AT_const_value attribute.

DEBUG: ENUMERATOR_VALUE_WRONG A: Sem DWARF 1: 3.8.5
The TAG_enumerator entry representing an enumeration member shall have an
AT_const_value attribute whose value is the actual numeric value of the
enumerator as represented on the target system.

DEBUG: EXTERNAL_PUBNAME_MISSING A: Syn DWARF 1: 3.6, 3.10.1
A TAG_global_variable debugging information entry shall have an entry in
the ".debug_pubnames" section.

DEBUG: FORM2_MISSING A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of FORM_DATA2,
the corresponding value shall be two bytes ending before the end of the
compilation unit’s information.

DEBUG: FORM4_MISSING A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of FORM_ADDR,
FORM_DATA4,FORM_REF4 the corresponding value shall be four bytes ending
before the end of the compilation unit’s information.

DEBUG: FORM8_MISSING A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of FORM_DATA8,
value shall be two bytes ending before the end of the compilation unit’s
information.

DEBUG: FORMAL_PARAMETER_MISSING A: Sem DWARF 1: 3.8.6
A parameter to a function that is a single argument of a specified type
shall be represented by a TAG_formal_parameter debugging information entry.

DEBUG: FORMAL_PARAMETER_TYPE_MISSING A: Syn DWARF 1: 3.8.6
A TAG_formal_parameter debugging information entry owned by a
TAG_subroutine_type debugging information entry shall have one of the four
type attributes (fundamental type, modified fundamental type, user-defined
type, or modified user-defined type).

DEBUG: FORMAL_PARAMETER_TYPE_WRONG A: Sem DWARF 1: 3.8.6
A TAG_formal_parameter debugging information entry shall have an AT_type
attribute matching the type specified for the corresponding parameter in
the source code.

DEBUG: FORM_BLOCK_2_LEN_MISSING A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of
DW_FORM_BLOCK2, the corresponding value shall begin with a block length
that is itself contained in two bytes appearing before the end of the
compilation unit’s information.

DEBUG: FORM_BLOCK_2_TOO_BIG A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of
DW_FORM_BLOCK2, the corresponding value shall begin with a block length

A Assertions
OFVPPC Assertions

54 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

such that the block is completely contained within the compilation unit’s
information.

DEBUG: FORM_BLOCK_4_LEN_MISSING A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of
DW_FORM_BLOCK4, the corresponding value shall begin with a block length
that is itself contained in four bytes appearing before the end of the
compilation unit’s information.

DEBUG: FORM_BLOCK_4_TOO_BIG A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of
DW_FORM_BLOCK4, the corresponding value shall begin with a block length
such that the block is completely contained within the compilation unit’s
information.

DEBUG: FORM_STRING_NULL_MISSING A: Syn DWARF 1: 4.4
If an attribute in a debugging information entry has a form of
FORM_STRING, the corresponding value shall be a null-terminated string
ending before the end of the compilation unit’s information.

DEBUG: FUNDAMENTAL_TYPE_BAD_ENCODING A: Syn DWARF 1: 4.8
A fundamental type attribute shall have a value which is one of the
following:

 Name Value
 ------------------- -----
 FT_char 0x1
 FT_signed_char 0x2
 FT_unsigned_char 0x3
 FT_short 0x4
 FT_signed_short 0x5
 FT_unsigned_short 0x6
 FT_integer 0x7
 FT_signed_integer 0x8
 FT_unsigned_integer 0x9
 FT_long 0xa
 FT_signed_long 0xb
 FT_unsigned_long 0xc
 FT_pointer 0xd
 FT_float 0xe
 FT_void 0x14
 FT_lo_user 0x8000
 ...
 FT_hi_user 0xffff

DEBUG: INLINED_SPECIFICATION_MISSING A: Syn DWARF 1: 3.3.6
A TAG_inlined_subroutine debugging information entry shall have an
AT_specification attribute whose value is a reference to the debugging
information entry representing the declaration or out of line instance of
the subroutine.

DEBUG: LABEL_LOW_PC_MISSING A: Syn DWARF 1: 3.5

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 55

A Assertions
OFVPPC Assertions

A TAG_label entry shall have a AT_low_pc attribute.

DEBUG: LABEL_MISSING A: Sem DWARF 1: 3.5
Every label in a C source program shall have a corresponding TAG_label
debugging information entry at the appropriate scope level in the object
file, with an AT_name attribute matching the label name in the source file.

DEBUG: LABEL_NAME_MISSING A: Syn DWARF 1: 3.5
A TAG_label entry shall have a AT_name attribute.

DEBUG: LABEL_UNEXPECTED A: Sem DWARF 1: 3.5
Every TAG_label debugging information entry shall match in name and scope
a label defined in the corresponding C source code.

DEBUG: LEXICAL_BLOCK_HIGH_PC_MISSING A: Syn DWARF 1: 3.4
A TAG_lexical_block entry shall have a AT_high_pc attribute.

DEBUG: LEXICAL_BLOCK_LOW_PC_MISSING A: Syn DWARF 1: 3.4
A TAG_lexical_block entry shall have a AT_low_pc attribute.

DEBUG: MEMBER_NAME_WRONG A: Sem DWARF 1: 3.8.4.2
The TAG_member debugging information entry for a member of a structure or
union having a name in the source program shall have an AT_name attribute
matching the member name as it appears in the source program.

DEBUG: MEMBER_PARENT_WRONG A: Syn DWARF 1: 3.8.4.1
A TAG_member entry shall be owned by a TAG_structure_type or
TAG_union_type entry.

DEBUG: MEMBER_TYPE_MISSING A: Syn DWARF 1: 3.8.4.2
A TAG_member entry for a structure or union data member entry shall have
an AT_type attribute.

DEBUG: MEMBER_TYPE_WRONG A: Sem DWARF 1: 3.8.4.2
The AT_type attribute of a TAG_member debugging information entry shall
describe the type of the member.

DEBUG: SIBLING_MISSING A: Syn DWARF 1: 2.3
Every debugging information entry, except the special entry whose tag is
TAG_padding, shall have a sibling attribute.

DEBUG: STMT_LIST_BAD C: Syn DWARF 1: 3.1: 6.
If a TAG_compile_unit debugging information entry has an AT_stmt_list
attribute, the attribute shall have a value that is an offset into the
".debug_line" section.

DEBUG: STRUCT_BYTE_SIZE_WRONG A: Sem DWARF 1: 3.8.4.1
If the size of a structure can be determined at compile time, then the
TAG_structure_type debugging information entry for that structure shall
include an AT_byte_size attribute containing a constant value equal to the
length of the structure (including any necessary padding bytes).

A Assertions
OFVPPC Assertions

56 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

DEBUG: STRUCT_INCOMPLETE A: Sem DWARF 1: 3.8.4.1
The TAG_structure type debugging information entry for an incomplete
struct type shall not have an AT_byte_size attribute.

DEBUG: STRUCT_MEMBERS A: Sem DWARF 1: 3.8.4.1
The members of a struct shall be represented by debugging information
entries that are owned by the corresponding TAG_structure_type entry;
those struct members shall be represented in the same order as the
corresponding list of members in the source program.

DEBUG: STRUCT_MEMBER_LOCATION_MISSING A: Syn DWARF 1: 3.8.4.2
The TAG_member entry for a member of a structure shall have an
AT_data_member_location attribute

DEBUG: STRUCT_MEMBER_OFFSET_WRONG A: Sem DWARF 1: 3.8.4.2
A TAG_member debugging information entry for a structure member shall have
a AT_location containing the relative offset of that member from the base
of the innermost structure containing the member.

DEBUG: STRUCT_NAME_MISSING A: Sem DWARF 1: 3.8.4.1
The TAG_structure_type debugging information entry for a struct having a
tag name shall contain an AT_name attribute matching the tag name in the
source code.

DEBUG: SUBPROGRAM_GLOBAL_MISSING A: Sem DWARF 1: 3.3
A function in a C source program that is not declared "static" shall be
described by a TAG_global_subroutine debugging information entry.

DEBUG: SUBPROGRAM_HIGH_PC_MISSING A: Syn DWARF 1: 3.3.3
The TAG_global_subroutine or TAG_subroutine debugging information entry
for the definition of a function shall have an AT_high_pc attribute
(except for the entry describing an in-lined function for which no
out-of-line instance was generated).

DEBUG: SUBPROGRAM_LOW_PC_MISSING A: Syn DWARF 1: 3.3.3
The TAG_global_subroutine or TAG_subroutine debugging information entry
for the definition of a function shall have an AT_low_pc attribute (except
for the entry describing an in-lined function for which no out-of-line
instance was generated).

DEBUG: SUBPROGRAM_MISSING A: Sem DWARF 1: 3.3.1
Every function in a C source file shall be represented by a debugging
information entry with a tag of TAG_global_subroutine, TAG_subroutine, or
TAG_inlined_subroutine which has a AT_name attribute matching the
function name used in the source code.

DEBUG: SUBPROGRAM_NAME_MISSING A: Syn DWARF 1: 3.3.1
A TAG_global_subroutine, TAG_subroutine, or TAG_inlined_subroutine
debugging information entry shall have an AT_name attribute

DEBUG: SUBPROGRAM_PARAMETERS_ORDER A: Sem DWARF 1: 3.3.4, 3.6: 1, 3

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 57

A Assertions
OFVPPC Assertions

Every formal parameter in a C source function definition or declaration
shall be represented by a TAG_formal_parameter entry which (1) is a child
of the TAG_global_subroutine, TAG_subroutine or TAG_inlined_subroutine
representing the function, (2) has a type attribute which matches the type
of the formal parameter, and (3) if the parameter is named, has a AT_name
attribute matching the given name.

DEBUG: SUBPROGRAM_PARAMETERS_OWNER A: Syn DWARF 1: 3.3.4, 3.6
TAG_formal_parameter and/or DW_TAG_unspecified_parameters entries shall be
owned by a TAG_global_subroutine, TAG_subroutine, TAG_inlined_subroutine,
or TAG_subroutine_type debugging information entry.

DEBUG: SUBPROGRAM_PROTOTYPE_NO A: Sem DWARF 1: 3.3.2
A TAG_subroutine or TAG_global_subroutine debugging information entry
representing a function that was not declared with a function prototype
style shall not have an AT_prototype attribute.

DEBUG: SUBPROGRAM_TYPE_MISSING A: Sem DWARF 1: 3.3.2
A C function which is not "void" shall be represented by a
TAG_global_subroutine or TAG_subroutine debugging information entry having
one of the four type attributes (fundamental type, modified fundamental
type, user-defined type, or modified user-defined type).

DEBUG: SUBPROGRAM_TYPE_WRONG A: Sem DWARF 1: 3.3.2
The type attribute in a TAG_global_subroutine or TAG_subroutine debugging
information entry shall match the type returned by the function as
declared in the C source code.

DEBUG: SUBPROGRAM_UNEXPECTED A: Sem DWARF 1: 3.3.1
The AT_name attribute of every TAG_global_subroutine, TAG_subroutine, and
TAG_inlined_subroutine debugging information entry shall match in name a
function defined in the corresponding C source code.

DEBUG: SUBPROGRAM_UNEXPECTED_EXTERNAL A: Sem DWARF 1: 3.3.1
A "static" function in a C source program shall be represented by a
TAG_subroutine debugging information entry.

DEBUG: SUBPROGRAM_UNEXPECTED_PC A: Sem DWARF 1: 3.3.3
A TAG_global_subroutine or TAG_subroutine entry for which no out-of-line
instance has been generated shall not have an AT_low_pc or AT_high_pc
attribute.

DEBUG: SUBPROGRAM_UNEXPECTED_TYPE A: Sem DWARF 1: 3.3.2
A "void" C function is be represented by a TAG_global_subroutine or
TAG_subprogram debugging information entry which shall not have an
attribute for the return type.

DEBUG: SUBROUTINE_PROTOTYPE_NO A: Sem DWARF 1: 3.8.6
A TAG_subroutine_type debugging information entry representing a function
type that was not declared with a function prototype style, shall not
contain an AT_prototyped attribute.

A Assertions
OFVPPC Assertions

58 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

DEBUG: SUBROUTINE_TYPE_MISNAMED A: Sem DWARF 1: 3.8.6
The TAG_subroutine_type debugging information entry for a function type
having a name shall have an AT_name attribute matching the function type
name as it appears in the source program.

DEBUG: SUBROUTINE_TYPE_WRONG A: Sem DWARF 1: 3.8.6
The TAG_subroutine_type debugging information entry for a function type
returning a value (not "void") shall have a type (fundamental, modified
fundamental, user defined, or modified user defined) attribute that
correctly denotes the type returned by the function as indicated in the
source code.

DEBUG: SUBROUTINE_UNEXPECTED A: Sem DWARF 1: 3.8.6
Every TAG_subroutine_type entry shall match in name a function type
defined in the corresponding C source code.

DEBUG: SUBR_TYPE_CHILD_BAD_TAG A: Syn DWARF 1: 3.8.6
Any child entries of a TAG_subroutine_type shall describe the type(s) of
the argument(s) to the function and shall be of type TAG_formal_parameter,
TAG_unspecified_parameters, [[or TAG_enumeration (for a parameter type
specified by an enumeration definition)]]. (Note: allowing enumerations is
an extension to the DWARF specification.)

DEBUG: TYPEDEF_MISSING A: Sem DWARF 1: 3.8.1
Every named typedef in a source file shall be represented by a TAG_typedef
debugging information entry with the same name in the same (corresponding)
scope.

DEBUG: TYPEDEF_NAME_MISSING A: Syn DWARF 1: 3.8.1
A TAG_typedef entry shall have a AT_name attribute.

DEBUG: TYPEDEF_TYPE_MISSING A: Syn DWARF 1: 3.8.1
A TAG_typedef debugging information entry shall contain one of the four
type attributes (fundamental type, modified fundamental type, user-defined
type, or modified user-defined type).

DEBUG: TYPEDEF_UNEXPECTED A: Sem DWARF 1: 3.8.1
Every TAG_typedef debugging information entry with an AT_name attribute
shall match in name and scope a typedef in the corresponding C source code.

DEBUG: TYPE_MODIFIER_CONST_MISSING A: Sem DWARF 1: 2.5.3
A "const" type in a source program shall be represented by a type
containing the MOD_const modifier.

DEBUG: TYPE_MODIFIER_POINTER_MISSING A: Sem DWARF 1: 2.5.3
A pointer type in a source program shall be represented by a type
containing the MOD_pointer_to modifier.

DEBUG: TYPE_MODIFIER_VOLATILE_MISSING A: Sem DWARF 1: 2.5.3
A "volatile" type in a source program shall be represented by a type
containing the MOD_volatile modifier.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 59

A Assertions
OFVPPC Assertions

DEBUG: UNION_BYTE_SIZE_WRONG A: Sem DWARF 1: 3.8.4.1
If the size of a union can be determined at compile time, then the
TAG_union_type entry for that union shall include an AT_byte_size
attribute containing a constant value equal to the length of the union
(including any necessary padding bytes).

DEBUG: UNION_INCOMPLETE A: Sem DWARF 1: 3.8.4.1
The TAG_union type debugging information entry for an instance of an
incomplete union shall not have an AT_byte_size attribute.

DEBUG: UNION_MEMBERS_MISSING A: Sem DWARF 1: 3.8.4.1
The members of a union shall be represented by debugging information
entries that are owned by the corresponding TAG_union; those union members
shall be represented in the same order as the corresponding list of
members in the source program.

DEBUG: UNION_MEMBER_OFFSET_WRONG A: Sem DWARF 1: 3.8.4.2
The debugging information entry for a union member shall have an
AT_location attribute containing the relative offset of that member from
the base of the innermost union containing the member.

DEBUG: UNION_NAME_MISSING A: Sem DWARF 1: 3.8.4.1
The TAG_union_type debugging information entry for a union having a tag
name shall have an AT_name attribute matching the tag name in the source
code.

DEBUG: VAR_EXTERNAL_MISSING A: Sem DWARF 1: 4.1:2
A file-level variable in a C source program that is not declared "static"
shall be described by a TAG_global_variable debugging information entry.

DEBUG: VAR_GLOBAL_MISSING A: Sem DWARF 1: 4.1
Every global variable in a source file shall be represented by a
TAG_global_variable debugging information entry at the appropriate scope
level in the object file, with a AT_name attribute matching the name used
in the source file.

DEBUG: VAR_GLOBAL_UNEXPECTED A: Sem DWARF 1: 3.6
Every TAG_global_variable debugging information entry shall match in name
and scope a variable defined in the corresponding C source code.

DEBUG: VAR_LOCAL_MISSING A: Sem DWARF 1: 4.1
Every local variable (including module-static variables) in a source file
shall be represented by a TAG_variable debugging information entry at the
appropriate scope level in the object file, with a AT_name attribute
matching the name used in the source file.

DEBUG: VAR_LOCAL_UNEXPECTED A: Sem DWARF 1: 3.6
Every TAG_variable debugging information entry shall match in name and
scope a variable defined in the corresponding C source code.

DEBUG: VAR_TYPE_MISSING A: Syn DWARF 1: 3.6: 3

A Assertions
OFVPPC Assertions

60 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

A TAG_global_variable or TAG_local_variable debugging information entry
shall have one of the four type attributes (fundamental type, modified
fundamental type, user-defined type, or modified user-defined type).

DEBUG: VAR_TYPE_WRONG A: Sem DWARF 1: 3.6: 3
A TAG_global_variable or TAG_local_variable debugging information entry
shall have type attribute that matches the type of the corresponding
variable in the C source code.

DEBUG: VAR_UNEXPECTED_EXTERNAL A: Sem DWARF 1: 3.6
A variable in a C source program that is declared "static" or has local
scope shall be described by a TAG_variable debugging information entry.

".debug_aranges" Section

DBGARAN: DEBUG_INFO_OFFSET_BAD A: Syn DWARF 1: 3.10.2
In a ".debug_aranges" set header the third field shall be the offset into
the ".debug_info" section of the compilation unit entry referenced by the
set.

DBGARAN: DEBUG_INFO_OFFSET_TOO_BIG A: Syn DWARF 1: 4.15
In a ".debug_aranges" set header the third field shall be an offset into
the ".debug_info" section and shall therefore have a value that is less
than the size of the ".debug_info" section.

DBGARAN: SET_LENGTH_MISSING A: Syn DWARF 1: 4.15
At the end of a set of address ranges shall come either the end of the
".debug_aranges" section, or the four byte length field of a new set
header.

DBGARAN: SET_LENGTH_TOO_BIG A: Syn DWARF 1: 4.15
The first header field of a set of address ranges shall give the length,
counting itself, of the contribution to the ".debug_aranges" section for a
compilation unit such that that contribution is completely contained
within the section.

DBGARAN: SET_LENGTH_TOO_SMALL A: Syn DWARF 1: 4.15
In a ".debug_aranges" set header the first field shall give the length of
the set of entries for a compilation unit and shall be a value of
sufficient size to hold at least the set header.

DBGARAN: UNTERMINATED_SECTION A: Syn DWARF 1: 4.15
In the ".debug_aranges" section, the final address range descriptor in a
set of entries for a compilation unit shall have a 0 address and a 0
length, and this terminating entry shall coincide with the end of the
section as determined by its length.

DBGARAN: VERSION_BAD A: Syn DWARF 1: 4.15
In a ".debug_aranges" set header the second field shall be the version
number with a value of 2.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 61

A Assertions
OFVPPC Assertions

DWARF 1 Location Descriptions

DBGLOC: BASEREG_MISSING A: Syn DWARF 1: 2.4.1, 4.7
The operation OP_BASEREG shall have a single operand value of size FT_long
ending before the end of the location description.

DBGLOC: CONST_MISSING A: Syn DWARF 1: 2.4.1, 4.7
The operation OP_CONST shall have a single operand value of size FT_long
ending before the end of the location description.

DBGLOC: OPCODE_INVALID A: Syn DWARF 1: 2.4
A location description consists of zero or more location operations, each
beginning with one of the following valid operation codes:

 Operation Code Type of operand
 ---------- ---- ---------------
 OP_REG 0x01 number
 OP_BASEREG 0x02 number
 OP_ADDR 0x03 address
 OP_CONST 0x04 number
 OP_DEREF2 0x05
 OP_DEREF 0x06
 OP_ADD 0x07
 OP_lo_user 0xe0
 ...
 OP_hi_user 0xff

DBGLOC: REG_MISSING A: Syn DWARF 1: 2.4.1, 4.7
The operation OP_REG shall have a single operand value of size FT_long
ending before the end of the location description.

DBGLOC: TARGET_ADDRESS_MISSING A: Syn DWARF 1: 2.4.1, 4.7
The operation OP_ADDR shall have a single target_address operand value
ending before the end of the location description

".debug_pubnames" Section

DBGPUBN: DEBUG_INFO_LENGTH_BAD A: Syn DWARF 1: 3.10.1
In a ".debug_pubnames" set header, the third field shall be the length in
bytes of the contents of the ".debug" section generated to represent the
compilation unit corresponding to that set of "pubnames", and shall
therefore match the value implied by the first field of the header for
that compilation unit.

DBGPUBN: DEBUG_INFO_OFFSET_BAD A: Syn DWARF 1: 3.10.1
In a ".debug_pubnames" set header the third field shall be the offset into
the ".ebug" section of the compilation unit entry referenced by the set.

DBGPUBN: DEBUG_INFO_OFFSET_TOO_BIG A: Syn DWARF 1: 4.14

A Assertions
OFVPPC Assertions

62 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

In a ".debug_pubnames" set header the third field shall be an offset into
the ".ebug" section and shall therefore have a value that is less than the
size of the ".ebug" section.

DBGPUBN: NAME_BAD A: Syn DWARF 1: 3.10.1
The name in an offset name pair in the ".debug_pubnames" section shall
match the name given by the AT_name attribute of the corresponding
debugging information entry in the ".debug" section.

DBGPUBN: NAME_TOO_LONG A: Syn DWARF 1: 4.14
The second part of each offset/name pair in the ".debug_pubnames" section
shall be a null-terminated string entirely contained within the set.

DBGPUBN: OFFSET_BAD A: Syn DWARF 1: 3.10.1
Each offset/name pair in the ".debug_pubnames" section shall begin with a
4-byte offset (relative to the third field of the set’s header) which
references a debugging information entry in the ".debug" section for the
object represented by the pair.

DBGPUBN: OFFSET_MISSING A: Syn DWARF 1: 4.14
Each offset/name pair in the ".debug_pubnames" section shall begin with a
4-byte offset entirely contained within the set.

DBGPUBN: OFFSET_TOO_BIG A: Syn DWARF 1: 4.14
Each offset/name pair in the ".debug_pubnames" section shall begin with a
4-byte offset to a debugging information entry in the ".ebug" section for
the object represented by the pair, and shall therefore have a value less
then the length of the debugging information for the compilation unit to
which that debugging information entry belongs.

DBGPUBN: PUBNAME_MISSING A: Syn DWARF 1: 3.10.1
A global object shall be represented by an offset/name pair in the
".debug_pubnames" section.

DBGPUBN: SET_LENGTH_MISSING A: Syn DWARF 1: 4.14
In a ".debug_pubnames" section, at the end of a set of entries shall come
either the end of the section, or the 4-byte length field of a new set
header.

DBGPUBN: SET_LENGTH_TOO_BIG A: Syn DWARF 1: 4.14
In a ".debug_pubnames" set header the first field shall give the length,
not counting itself, of the contribution to the ".debug_pubnames" section
for a compilation unit such that that contribution is completely contained
within the section.

DBGPUBN: SET_LENGTH_TOO_SMALL A: Syn DWARF 1: 4.14
In a ".debug_pubnames" set header the first field shall give the length of
the set of entries for a compilation unit and shall be a value of
sufficient size to hold at least the set header.

DBGPUBN: UNTERMINATED_SECTION A: Syn DWARF 1: 4.14

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 63

A Assertions
OFVPPC Assertions

In the ".debug_pubnames" section, the final offset/name pair in a set of
entries shall be followed by a final 4-byte offset only containing the
value 0, and this terminating entry shall appear at the position implied
by the length of the set of entries as given by the first field of the
header for the set.

DBGPUBN: VERSION_BAD A: Syn DWARF 1: 4.14
In a ".debug_pubnames" set header the second field shall be the version
number with a value of 2.

DBGPUBN: WRONG_TYPE_OF_DIE A: Syn DWARF 1: 3.3, 3.6, 3.10.1
An object In the ".debug_pubnames" section shall have a corresponding
debugging information entry with the same name of type
TAG_global_subroutine or TAG_global_variable.

".line" Section

DBGLINE: LAST_LINE_NUMBER_NOT_ZERO A: Syn DWARF 1: 3.11
The final entry of a source statement table shall have a line number equal
to zero.

DBGLINE: LENGTH_NOT_MULTIPLE_OF_ENTRY A: Syn DWARF 1: 4.16
The length field beginning a new source statement table shall have a value
which is a multiple of the source statement entry size.

DBGLINE: LENGTH_TOO_BIG A: Syn DWARF 1: 3.11
The length field beginning a new source statement table shall give the
length, including itself, of the table such that the entire table is
contained within a single ".line" section.

DBGLINE: LENGTH_TOO_SMALL A: Syn DWARF 1: 3.11
The length field beginning a new source statement table shall have a value
at least equal to the minimum size of a source statement table (20 bytes).

DBGLINE: LINE_ENTRY_MISSING A: Sem DWARF 1: 3.11
Every C source statement shall be represented by an entry in the
corresponding source statement table in the ".line" section.

DBGLINE: LINE_ENTRY_UNEXPECTED A: Sem DWARF 1: 3.11
Every entry in a source statement table in the ".line" section shall give
the line number of an executable C statement in the corresponding source
file.

DBGLINE: SECTION_TOO_SMALL A: Syn DWARF 1: 3.11
A non-null ".line" section shall be of sufficient size to hold at least
one source statement table.

DBGLINE: STATEMENT_COLUMN_MISSING A: Sem DWARF 1: 3.11
Every C source statement shall be represented by an entry in the
corresponding source statement table having a column number which is
either SOURCE_NO_POS (0xffff) or which matches the first column number of
that source statement.

A Assertions
OFVPPC Assertions

64 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Linked Objects

LINKED: LINKED_ATTRIBUTE_CHANGED A: Syn
 SVR4 ABI: 4: Sections (implicit)

A linker shall not change the value of any attribute of a debugging
information entry (except for address values which may undergo relocation).

LINKED: LINKED_ATTRIBUTE_MISSING A: Syn
 SVR4 ABI: 4: Sections (implicit)

All attributes of a given debugging information entry input to a linker
shall be present in the corresponding debugging information entry output
by the linker.

LINKED: LINKED_ATTRIBUTE_UNEXPECTED A: Syn
 SVR4 ABI: 4: Sections (implicit)

A linker shall not add attributes to debugging information entries.

LINKED: LINKED_BAD_SHN_ABS A: Syn
 SVR4 ABI: 4: Sections (implicit)

A linker shall preserve a section index value of SHN_ABS (that is, if the
st_shndx value of an input symbol table entry is SHN_ABS then the st_shndx
value of the output symbol table entry having the same name shall be
SHN_ABS).

LINKED: LINKED_BAD_SHN_COMMON A: Syn SVR4 ABI: 4: Symbol Table
A linker shall allocate and assign to a section a data object having a
section index of SHN_COMMON (that is, if the st_shndx value of an input
symbol table entry is SHN_COMMON then the st_shndx value of the output
symbol table entry having the same name shall be that of some actual
section not SHN_COMMON).

LINKED: LINKED_BAD_ST_BIND A: Syn
 SVR4 ABI: 4: Symbol Table (implicit)

A linker shall preserve the public/private state of a symbol (that is, if
the ELF32_ST_BIND value of an input symbol table entry is STB_GLOBAL or
STB_WEAK then the ELF32_ST_BIND value of the output symbol table entry
with the same name shall be STB_GLOBAL or STB_WEAK, or if the input
binding is STB_LOCAL the output binding shall be STB_LOCAL).

LINKED: LINKED_BAD_ST_OTHER A: Syn
 SVR4 ABI: 4: Symbol Table (implicit)

A linker shall preserve the st_other value of a symbol (that is, the
st_other values shall be the same for input and output symbol table
entries having the same name).

LINKED: LINKED_BAD_ST_SIZE A: Syn
 SVR4 ABI: 4: Symbol Table (implicit)

A linker shall preserve the size of a public data object with non-zero
size (that is, the st_size values shall be the same for input and output
symbol table entries having the same name and being of type STT_OBJECT,
with binding STB_GLOBAL or STB_WEAK, and with non-zero st_size value).

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 65

A Assertions
lvppc Assertions

LINKED: LINKED_BAD_ST_TYPE A: Syn
 SVR4 ABI: 4: Symbol Table (implicit)

A linker shall preserve the type of a symbol (that is, the ELF32_ST_TYPE
values shall be the same for input and output symbol table entries having
the same name).

LINKED: LINKED_DUPLICATE_SYMBOL A: Syn
 SVR4 ABI: 4: Symbol Table (implicit)

An entry, as identified by its name, shall appear only once in a symbol
table.

LINKED: LINKED_SECTION_MISSING A: Syn
 SVR4 ABI: 4: Sections (implicit)

A linker shall output all sections found in its input.

LINKED: LINKED_SECTION_UNEXPECTED A: Syn
 SVR4 ABI: 4: Sections (implicit)

A linker shall not create sections not found in its input.

LINKED: LINKED_SYMBOL_MISSING A: Syn
 SVR4 ABI: 4: Symbol Table (implicit)

A linker shall output all symbol table entries found in its input.

LINKED: LINKED_SYMBOL_UNEXPECTED A: Syn
 SVR4 ABI: 4: Sections (implicit)

A linker shall not create symbol table entries not found in its input.

LINKED: SECTION_CONCATENATION_GAPS A: Syn
 SVR4 ABI: 4: Sections (implicit)

All sections in the input object files having the same name shall be
combined in arrival order into a single section by that name in the linked
output file with no gaps within the section except as required by
alignment constraints.

LINKED: SECTION_CONCATENATION_SIZE A: Syn
 SVR4 ABI: 4: Sections (implicit)

All sections in the input object files having the same name shall be
combined into a single section by that name in the linked output file and
the size of that output section shall be the sum of the sizes of those
input sections plus the sizes of any gaps required by alignment
constraints.

lvppc Assertions

ARCHIVE: ARCHIVE_SYMBOL_MISSING A: Syn SVR4 ABI: 7. Archive File
An external symbol in an archive object file member shall be present in
the archive symbol table.

ARCHIVE: ARCHIVE_SYMBOL_UNEXPECTED A: Syn SVR4 ABI: 7. Archive File
A symbol shall not be present in the archive file symbol table unless it
is an external symbol in some object file member in the archive file.

A Assertions
lvppc Assertions

66 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

ARCHIVE: ARMAG_WRONG A: Syn SVR4 ABI: 7. Archive File
An archive file shall begin with the characters ‘!<elf_>\n’.

ARCHIVE: EXCESS_BYTE_IN_FILE A: Syn SVR4 ABI: 7. Archive File
No bytes in the file shall not be contained in a member.

ARCHIVE: AR_DATE_NOT_DECIMAL A: Syn SVR4 ABI: 7. Archive File
Each archive header ar_date field shall be 12 bytes in length and contain
the decimal representation of the modification date of the file at the
time of its insertion into the archive, in a system dependent format.

ARCHIVE: AR_FMAG_WRONG A: Syn SVR4 ABI: 7. Archive File
Each archive header ar_fmag field shall be 2 bytes in length and contains
ar_fmag[0] = ‘’’, ar_fmag[1] = ‘\n’.

ARCHIVE: AR_GID_NOT_DECIMAL A: Syn SVR4 ABI: 7. Archive File
Each archive header ar_gid field shall be 6 bytes in length and contain
the decimal representation of the member’s group id.

ARCHIVE: AR_MODE_NOT_OCTAL A: Syn SVR4 ABI: 7. Archive File
Each archive header ar_mode field shall be 8 bytes in length and contain
the octal representation of the member’s file system mode.

ARCHIVE: AR_NAME_LENGTH_WRONG A: Syn SVR4 ABI: 7. Archive File
The archive header field ar_name shall be 16 bytes in length.

ARCHIVE: AR_NAME_IN_15_WRONG A: Syn SVR4 ABI: 7. Archive File
If an archive member’s name is 15 bytes or less in length the ar_name
field of its archive header shall contain the member’s file name
terminated with ‘/’ and padded with blanks on the right.

ARCHIVE: AR_NAME_OVER_15_WRONG A: Syn SVR4 ABI: 7. Archive File
If an archive member’s name is 16 bytes or more in length the ar_name
field of its archive header shall contain a ‘/’ followed by a zero-based
offset of the member’s name in the archive string table padded with blanks
on the right.

ARCHIVE: AR_SIZE_DECIMAL A: Syn SVR4 ABI: 7. Archive File
Each archive header ar_size field shall be 10 bytes in length and contain
the decimal representation of the member’s size in bytes.

ARCHIVE: AR_UID_NOT_DECIMAL A: Syn SVR4 ABI: 7. Archive File
Each archive header ar_uid field shall be 6 bytes in length and contain
the decimal representation of the member’s user id.

ARCHIVE: MEMBER_CONTENTS_CHANGED A: Syn SVR4 ABI: 7. Archive File
Each archive member shall consist of an archive header followed by the
unchanged contents of the archived file.

ARCHIVE: MEMBER_MISALIGNED A: Syn SVR4 ABI: 7. Archive File

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 67

A Assertions
lvppc Assertions

Each archive member shall begin on an even byte boundary with a newline
used as padding if necessary.

ARCHIVE: STRING_TABLE_AR_NAME_WRONG A: Syn SVR4 ABI: 7. Archive File
If an archive string table is present its ar_name field shall consist of
two ‘/’ characters followed by 14 blanks.

ARCHIVE: STRING_TABLE_MISSING A: Syn SVR4 ABI: 7. Archive File
If any archive member’s name is more than 15 bytes long, a string table
shall precede all normal archive members, following the archive symbol
table if it exists.

ARCHIVE: STRING_TABLE_WRONG A: Syn SVR4 ABI: 7. Archive File
If an archive string table is present it shall contain an array of the
file names of the archive members, each followed by ‘/’ and a ‘\n’.

ARCHIVE: SYMBOL_TABLE_ARRAY_TOO_SHORT A: Syn SVR4 ABI: 7. Archive File
If an archive symbol table is present, the word after that containing the
number of symbols in the table shall begin an array of words in big-endian
byte order containing the offset within the archive of the archive header
of the member in which each symbol is defined.

ARCHIVE: SYMBOL_TABLE_AR_NAME_WRONG A: Syn SVR4 ABI: 7. Archive File
If an archive symbol table is present its ar_name field shall contain ‘/’
followed by 15 blanks.

ARCHIVE: SYMBOL_TABLE_AR_SIZE_WRONG A: Syn SVR4 ABI: 7. Archive File
If an archive symbol table is present, the field ar_size for its archive
header shall indicate the size of the sum of the word containing the
number of symbols in the table, its file offset array, and its symbol name
array.

ARCHIVE: SYMBOL_TABLE_MISSING A: Syn SVR4 ABI: 7. Archive File
If an archive file has one or more object file members with external
symbols, its first member shall be an archive symbol table.

ARCHIVE: SYMBOL_TABLE_NAME_UNTERMINATED A: Syn SVR4 ABI: 7. Archive File
If an archive symbol table is present, the word following the file offset
array shall begin an array of null terminated names for each symbol.

ARCHIVE: SYMBOL_TABLE_OUT_OF_ORDER A: Syn SVR4 ABI: 7. Archive File
If an archive symbol table is present, entries in its file offset and
symbol name arrays shall be in the order of the archive members.

ARCHIVE: SYMBOL_TABLE_TOO_SHORT A: Syn SVR4 ABI: 7. Archive File
If an archive symbol table is present, its first 4 bytes shall be a word
in big-endian byte order containing the total number of symbols in the
symbol table.

A Assertions
Run-time assertions

68 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Run-time assertions

Run-time alignment assertions

ALGNSEC: ALGN_BIG_ENDIAN_ORDER A: Sem
PowerPC ABI: 3. Data Representation

Big-endian byte order means that the most significant byte of a halfword-
or word-sized storage unit resides at the lowest byte address.

ALGNSEC: ALGN_LITTLE_ENDIAN_ORDER A: Sem
PowerPC ABI: 3. Data Representation

Little-endian byte order means that the least significant byte of a
halfword- or word-sized storage unit resides at the lowest byte address.

ALGNSEC: ALGN_TYPE_SIZES A: Sem
PowerPC ABI: 3. Data Representation

Fundamental types are of the correct size. This includes char, unsigned
char, signed char, short, signed short, unsigned short, int, signed int,
long int, signed long, enum, unsigned int, unsigned long, pointer *,
function (*)(), float, double, long double, and if supported, long long.

ALGNSEC: ALGN_TYPE_ALIGNMENT A: Sem
PowerPC ABI: 3. Data Representation

Fundamental types are of the correct alignment. This includes char,
unsigned char, signed char, short, signed short, unsigned short, int,
signed int, long int, signed long, enum, unsigned int, unsigned long,
pointer *, function (*)(), float, double, long double, and if supported,
long long.

ALGNSEC: ALGN_EABI_LONG_DBL A: Sem
PowerPC EABI: Data Representation

The alignment of long double shall be 8 bytes (doubleword), although the
size of long double shall be 16 bytes.

ALGNSEC: ALGN_EABI_AGGREGATE_W_LONG_DBL A: Sem
PowerPC EABI: Data Representation

An array, structure or union containing a long double shall start aligned
on an 8 byte boundary.

ALGNSEC: ALGN_ARRAY_ALIGNMENT A: Sem
PowerPC ABI: 3. Data Representation

An array uses the same alignment as its elements.
ALGNSEC: ALGN_STRUCT_MAX_ALIGNMENT A: Sem

PowerPC ABI: 3. Data Representation
A structure or union is aligned on the same boundary as its most strictly
aligned component (i.e. the component with the maximum alignment).

ALGNSEC: ALGN_INTERNAL_PADDING A: Sem
PowerPC ABI: 3. Data Representation

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 69

A Assertions
Run-time assertions

Each member is assigned the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous
member.

ALGNSEC: ALGN_AGGREGATE_MULT_OF_ALIGN A: Sem
PowerPC ABI: 3. Data Representation

The size of any object, including aggregates and unions, is always a
multiple of the object’s alignment.

ALGNSEC: ALGN_BIT_STRUCT_MAX_ALIGNMENT A: Sem
PowerPC ABI: 3. Data Representation

A structure or union with bit-fields is aligned on the same boundary as
its most strictly aligned component (i.e. the component with the maximum
alignment).

ALGNSEC: ALGN_BIT_INTERNAL_PADDING A: Sem
PowerPC ABI: 3. Data Representation

Each bit-field member is assigned the lowest available offset with the
appropriate alignment. This may require internal padding, depending on
the previous member.

ALGNSEC: ALGN_BIT_AGGREGATE_MULT_OF_ALIGN A: Sem
PowerPC ABI: 3. Data Representation

The size of any object, including aggregates and unions, with bit-fields
is always a multiple of the object’s alignment.

ALGNSEC: ALGN_BIT_FIELD_RANGES A: Sem
PowerPC ABI: 3. Data Representation

Bit-fields have the appropriate ranges for the declared types including
signed char, char, unsigned char, signed short, short, unsigned short,
signed int, int, enum, unsigned int, signed long, long, and unsigned long.

ALGNSEC: ALGN_BIT_PLAIN_UNSIGNED A: Sem
PowerPC ABI: 3. Data Representation

"Plain" bit-fields (that is, those neither signed no unsigned) always have
non-negative values and have the same range as bit-fields of the same size
with the corresponding unsigned type.

ALGNSEC: ALGN_BIT_ALLOCATION_ORDER A: Sem
PowerPC ABI: 3. Data Representation

Bit-fields are allocated from least- to most-significant in little-endian
implementations and most- to least-significant in big-endian
implementations.

ALGNSEC: ALGN_BIT_CANNOT_CROSS_STOR_UNIT A: Sem
PowerPC ABI: 3. Data Representation

A bit-field must entirely reside in a storage unit appropriate for its
declared type.

ALGNSEC: ALGN_BIT_STOR_UNIT_SHARING A: Sem
PowerPC ABI: 3. Data Representation

A Assertions
Run-time assertions

70 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Bit-fields must share a storage unit with other structure and union
members (either bit-field or non-bit-field) if and only if there is
sufficient space within the storage unit.

ALGNSEC: ALGN_BIT_UNNAMED_BIT_FIELD_ALGN A: Sem
PowerPC ABI: 3. Data Representation

Unnamed bit-fields’ types do not affect the alignment of a structure or
union, although an individual bit-field’s member offsets obey the
alignment constraints.

ALGNSEC: ALGN_BIT_UNNAMED_BIT_FIELD_0_LEN A: Sem
PowerPC ABI: 3. Data Representation

An unnamed, zero-width bit-field shall prevent any further bit-field or
other member from residing in the storage unit corresponding to the type
of the zero-width bit-field.

Run-time call assertions

Registers

CALLSEC: CALL_NONVOLTILE_REGS A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

Registers r1, r14-r31, f14-f31 are nonvolatile to the calling function.

CALLSEC: CALL_EABI_R2_ELF A: Sem
PowerPC EABI: 3. Function Calling Conventions

GPR2 shall contain the base of the ELF sections named .sdata2 and .sbss2,
if either section exists in an object file.

CALLSEC: CALL_EABI_R2_ELF_16_BIT_OFF A: Sem
PowerPC EABI: 3. Function Calling Conventions

If GPR2 contains the base of the ELF sections named .sdata2 and .sbss2,
the base is an address such that every byte in the section is within a
signed 16-bit offset of that address.

CALLSEC: CALL_EABI_R2_ELF_SHARED_OBJ A: Sem
PowerPC EABI: 3. Function Calling Conventions

A routine in an ELF shared object file shall not use GPR2.

CALLSEC: CALL_R13_SDA_BASE A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

Register r13 is the small data area pointer (the loader defined symbol
_SDA_BASE_).

CALLSEC: CALL_R31_ENVIRONMENT_PTR A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

Languages that require environment pointers shall use r31 for that purpose.

CALLSEC: CALL_COND_REGS_NONVOLATILE A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 71

A Assertions
Run-time assertions

Fields CR2, CR3, and CR4 of the condition register are nonvolatile.

CALLSEC: CALL_STACK_16_BYTE_ALIGN A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

The stack pointer (stored in r1) shall maintain 16-byte alignment.

CALLSEC: CALL_STACK_LOWEST_ALLOC_FRAME A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

The stack pointer shall point to the lowest allocated, valid stack frame.

CALLSEC: CALL_STACK_GROWS_TO_LOW_ADDRESSES A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

The stack pointer shall grow towards low addresses.

CALLSEC: CALL_STACK_PTR_TO_PREV_FRAME A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

The contents of the word at the address pointed to by the stack pointer
shall point to the previously allocated stack frame.

CALLSEC: CALL_VARARGS_COND_REG A: Sem
PowerPC ABI: 3. Function Calling Conventions: Variable
Argument Lists

CR bit 6 (CR1, floating-point invalid exception) shall be set by the
caller of a variable argument list function.

CALLSEC: CALL_LR A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

The LR register contains the address to which a called function normally
returns.

CALLSEC: CALL_SIG_HANDLING A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

If a signal handling function returns, the process resumes its original
execution path with all registers restored to their original values.

Stack Frame

CALLSEC: CALL_EABI_STACK_8_BYTE_ALIGN A: Sem
PowerPC EABI: Function Calling Sequence

The stack pointer (GR1) shall maintain 8-byte alignment, from
initialization through all routine calls and dynamic stack space
allocation.

CALLSEC: CALL_STACK_FIRST_FRAME A: Sem
PowerPC ABI: 3. Function Calling Conventions: Registers

The contents of the word at the address pointed to by the first stack
pointer shall point to 0 (NULL).

CALLSEC: CALL_STACK_PTR_RESTORED A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

The stack pointer shall be decremented by the called function in its
prologue, if required, and restored prior to return.

A Assertions
Run-time assertions

72 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

CALLSEC: CALL_STACK_STORE_WORD_W_UPDATE A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

The stack pointer shall be decremented and the back chain updated
atomically using one of the Store Word with Update instructions, so that
the stack pointer always points to the beginning of a linked list of stack
frames.

CALLSEC: CALL_STACK_PARM_AREA_CALLER_ALLOC A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

The parameter list area shall be allocated by the caller and shall be
large enough to contain the arguments that the caller stores in it.

CALLSEC: CALL_SAVE_FR_REG A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

Before a function changes the value in any nonvolatile floating-point
register, frn, it shall save the value in frn in the double word in the
floating-point register save area 8*(32-n) bytes before the back chain
word of the previous frame.

CALLSEC: CALL_SAVE_GR_REG A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

Before a function changes the value in any nonvolatile general register,
rn, it shall save the value in rn in the word in the general register save
area 4*(32-n) bytes before the low-addressed end of the floating-point
register save area.

CALLSEC: CALL_SAVE_CR_REG A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

Before a function changes the value in any nonvolatile field in the
condition register, it shall save the values in all the nonvolatile fields
of the condition register at the time of entry to the function the CR save
area.

CALLSEC: CALL_STACK_HAS_BACK_CHAIN_LR A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

The stack frame header consists of the back chain word and the LR save
word.

CALLSEC: CALL_PADDING_IN_LOC_VAR_AREA A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

Any padding of the frame as a whole shall be within the local variable
area.

CALLSEC: CALL_PARM_LIST_FOLLOWS_HEADER A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

The parameter list area shall immediately follow the stack frame header.

CALLSEC: CALL_REG_SAV_AREA_NO_PAD A: Sem
PowerPC ABI: 3. Function Calling Conventions: The Stack Frame

The register save areas shall contain no padding.

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 73

A Assertions
Run-time assertions

Parameter Passing

CALLSEC: CALL_8_GR_FOR_PARM A: Sem
PowerPC ABI: 3. Function Calling Conventions: Parameter Passing

Up to eight words are passed in general purpose registers, loaded
sequentially into general purpose registers r3 through r10.

CALLSEC: CALL_8_FR_FOR_PARM A: Sem
PowerPC ABI: 3. Function Calling Conventions: Parameter Passing

Up to eight words are passed in floating-point registers, loaded
sequentially into floating-point registers f1 through f8.

CALLSEC: CALL_DBL_PARM_IN_FR A: Sem
PowerPC ABI: 3. Function Calling Conventions

Double or float arguments are placed into the floating-point registers
when available.

CALLSEC: CALL_SIMPLE_ARG_IN_GR A: Sem
PowerPC ABI: 3. Function Calling Conventions

Arguments of type char, short, int, long, enum, and pointers an object are
placed into general registers when available.

CALLSEC: CALL_STRUCT_UNION_DBL_IN_GR A: Sem
PowerPC ABI: 3. Function Calling Conventions

An argument of type struct, union, or long double, any of which shall be
treated as a pointer to the object placed into general registers when
available.

CALLSEC: CALL_STRUCT_UNION_DBL_COPIES A: Sem
PowerPC ABI: 3. Function Calling Conventions: Parameter passing

An argument of type struct, union, or long double, any of which shall be
treated as a pointer to a copy of the object when call-by-value semantics
are required.

CALLSEC: CALL_STRUCT_UNION_DBL_ORIG A: Sem
PowerPC ABI: 3. Function Calling Conventions: Parameter passing

An argument of type struct, union, or long double, any of which shall be
treated as a pointer the object may pass a pointer to the object itself
only if the caller can ascertain that the object is constant.

CALLSEC: CALL_STACK_PARMS A: Sem
PowerPC ABI: 3. Function Calling Conventions: Parameter Passing

Arguments not otherwise handled above are passed in the parameter words of
the caller’s stack frame.

CALLSEC: CALL_LONG_LONG_PARMS_ALIGN A: Sem
PowerPC ABI: 3. Function Calling Conventions

If an implementation supports long long data types, the argument is
aligned on an even word boundary.

CALLSEC: CALL_LONG_LONG_PARM_ORDER A: Sem
PowerPC ABI: 3. Function Calling Conventions

A Assertions
Run-time assertions

74 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

If an implementation supports long long data types, load the
lower-addressed word of the long long into the general register and the
higher-addressed word into general register + 1.

CALLSEC: CALL_SIMPLE_ARGS_ALIGN A: Sem
PowerPC ABI: 3. Function Calling Conventions

Arguments of type char, short, int, long, enum, pointer to an object of
any type, and pointers to a struct, union, or long double passed on the
stack are considered to have 4-byte size and alignment, with simple
integer types shorter than 32 bits sign- or zero-extended (conceptually)
to 32 bits.

CALLSEC: CALL_FLOAT_ARGS_ALIGN A: Sem
PowerPC ABI: 3. Function Calling Conventions

Float, long long (where implemented), and double arguments passed on the
stack are considered to have 8-byte size and alignment, with float
arguments converted to double representation.

CALLSEC: CALL_ARG_ALIGN A: Sem
PowerPC ABI: 3. Function Calling Conventions

Arguments passed upon the stack are aligned on a stack address that is a
multiple of the alignment requirement of the argument.

CALLSEC: CALL_ARG_COPYING A: Sem
PowerPC ABI: 3. Function Calling Conventions

Arguments passed upon the stack are copied byte-for-byte, beginning with
its lowest addressed byte, into increasing stack addresses.

Return Values

CALLSEC: CALL_RET_DBL A: Sem
PowerPC ABI: 3. Function Calling Conventions: Return Values

Functions shall return double values in f1.

CALLSEC: CALL_RET_FLOAT A: Sem
PowerPC ABI: 3. Function Calling Conventions: Return Values

Functions shall return float values rounded to single precision in f1.

CALLSEC: CALL_RET_WORD A: Sem
PowerPC ABI: 3. Function Calling Conventions: Return Values

Functions shall return values of type int, long, enum, short, and char, or
a pointer to any type as unsigned or signed integers as appropriate, zero-
or sign-extended to 32 bits if necessary, in r3.

CALLSEC: CALL_RET_SMALL_STRUCT_UNION A: Sem
PowerPC ABI: 3. Function Calling Conventions: Return Values

A structure or union whose size is less than or equal to 8 bytes shall be
returned in r3 and r4, as if it were stored in an 8-byte aligned memory
area and then the low-addressed word were loaded into r3 and the
high-addressed word into r4.

CALLSEC: CALL_RET_LONG_LONG A: Sem

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 75

A Assertions
Run-time assertions

PowerPC ABI: 3. Function Calling Conventions: Return Values
Values of type long long and unsigned long long, where supported, shall be
returned with the lower addressed word in r3 and the higher in r4.

CALLSEC: CALL_RET_LONG_DBL_STRUCT A: Sem
PowerPC ABI: 3. Function Calling Conventions: Return Values

Values of type long double and struct that do not meet the requirements
for being returned in registers are returned in a storage buffer allocated
by the caller.

CALLSEC: CALL_RET_UNDEF_STRUCT_BITS A: Sem
PowerPC ABI: 3. Function Calling Conventions

Bits beyond the last member of the structure or union returned in a
storage buffer allocated by the caller, are not defined.

CALLSEC: CALL_RET_ADDR_BUFFER A: Sem
PowerPC ABI: 3. Function Calling Conventions: Return Values

The address of a buffer used for returning large return types is passed as
a hidden argument in r3 as if it were the first argument, causing the
first available general register for argument passing to be r4 instead of
r3.

B Expectations Language
Statement subjects and modifiers

76 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

B Expectations Language

The Expectations Language produced by the cparse program is intended to be both
human-readable and easily-parsed by a program. The following are the basic concepts of
this language.

• The language is written as ASCII text.

• Every “statement” in the language is contained within a single line of text, even
if that line must be very long.

• Every statement in the language has a fixed set of fields, all present (except pos-
sibly the last field), so that once recognized, most statements can be parsed by a
call to sscanf. Fields are separated by white space.

• Every statement begins with a three-letter abbreviation indicating the subject of
the statement (BLO for block, TYP for type, etc.), followed by a single character
denoting a subkind or modifier. For cases in which no modifier is required, an
asterisk is used as a place holder. The modifier “< ” means beginning as in begin-
ning-of-block and the modifier “> ” means” ending as in end-of-block.

• The modifier is followed by a source_location in the form of two integer fields
specifying the line and column number in the source where the subject of the
statement appears. Additional details about source_location are given in the dis-
cussion of Syntax later in this chapter.

• When statements include identifiers or strings (e.g. the name of a function),
these longer fields come at the end of the statement.

Statement subjects and modifiers

The following are the subject abbreviations in the language, i.e., the recognized
beginnings of statement lines, and their associated modifiers.

➤ Some of these expectation statements provide information not currently used
by DWARF1.

BAS * definition of a base type

BIT * bit-field member of a struct or union

BLO < block begin

BLO > block end

COM C beginning of a compilation unit, C language

DEF d preprocessor definition

DIM * dimension of an array

ENU * enumeration member

FUN f function

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 77

B Expectations Language
Statement subjects and modifiers

INC * include file (SRC to follow)

LAB * label

LIN * new name for source file

MEM * member of a struct or union (other than a bit field)

NAM * name given to a type by a typedef

OLD * current function definition used old-style header

PAR p parameter (of a function)

REF r reference to (use of) a function or function pointer

SRC < source file begin

SRC > source file end

STM * executable statement (other than block begin or block end)

TYP k type definition (the possible values of k are given below)

TYP > end of a complex type (explained below)

UND * preprocessor undefinition (#undef)

VAR s variable (the possible values of s are given below).

Definition subkind

The vlaues of the subkind d for a preprocessor #define are:

+ for a repeated #define (same name and definition) without an intervening #undef

* all other uses of #define

Function forms

The values of the form f for functions are:

D extern declaration

d static (private) declaration

F public definition

f static (private) definition

Kinds of types

The values of the subkind k for types are listed below. Those marked “complex type”
require multiple statements to fully specify the type, e.g., a struct requires nested MEM
or BIT statements to enumerate the members of the struct.

A array complex type, followed by exactly one dimension (DIM statement)

B Expectations Language
Statement syntax

78 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

C const const form of a previously known type

E enum complex type, followed by enumeration members (ENU statements)

F function complex type, followed by parameters (PAR statements)

P pointer

S struct complex type, followed by members (MEM statements)

U union complex type, followed by members (MEM statements)

V volatile volatile form of a previously known type

Parameter kind

The values of the parameter subkind p for function parameters is:

r register storage

. variable parameters (...)

* all other parameters

Reference kind

The value of the reference subkind r for function references is:

F for reference to a declared function

P for reference to a declared function pointer

U for reference to an undeclared function

Storage classes for variables

The values of the storage subkind s for variables are:

A automatic

E extern

P public

R register

S static

Statement syntax

Listed below is the syntax for the various statements expressed in terms of the required
sequence of fields.

BAS * loc new_ordinal byte_size base_type_name

BIT * loc type_ref byte_offset bit_offset bit_size [name]

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 79

B Expectations Language
Statement syntax

BLO b loc

COM C loc source-file_name

DEF d loc name [definition]

DIM * loc low_bound high_bound

ENU * loc value name

FUN f loc type_ref name

INC * loc file_spec

LAB * loc name

LIN * loc new_name_of_source_file

MEM * loc type_ref byte-offset [name]

NAM * loc type_ref name

OLD *

PAR p loc type_ref name

REF r loc name

SRC b loc file_name

STM * loc

TYP k loc new_ordinal type_ref [tag_name]

TYP > loc new_ordinal total_bytes

UND * loc name

VAR s loc type_ref name

The following are the syntactic abbreviations used above:

• b is an angle bracket, either a less-than sign (begin) or greater-than sign (end).

• f is a function form as previously defined

• k is a type kind (subkind) as previously defined.

• loc is an abbreviation for source_location (two integer fields).

• s is a storage class as previously defined.

Also, the following semantic definitions and rules apply to the linguistic variables in the
statement syntax above:

base_name the name of a base type; it need not be a simple identifier, e.g.
signed int is a valid base name

B Expectations Language
Statement syntax

80 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Source location

In the DWARF specification there is a concept called Declaration Coordinates defined
to be the file name, line number, and column number of the first character of an
identifier. The Expectation Language uses source_location for a similar purpose.

A source_location is made up of two integers (separated by white space) specifying the
line and column number in the source where the subject of a statement appears. For
identifiers, the location is that of the first character; for other constructs, the syntactic
position designated by the source_location is defined below.

Line numbers and column numbers begin with 1 to mean first line or first column. A
value of 0 means “undefined”.

The following are the specific interpretations of source location for each kind of subject.

BAS undefined

BIT location of the bit field identifier

BLO < location of the opening left brace that begins the block

BLO < location of the closing right brace that ends the block

bit_offset the offset of a bit field within its underlying type (int or unsigned);
bit offsets depend on the byte-ordering in effect (big-endian or
little-endian)

byte_offset the offset of the left-most byte of a member within a structure or
union; in the case of a bit field, this is the offset of the left-most byte
of the field’s container within the structure or union

byte_size byte size of a base type or of a structure or union member; in the
case of a bit field, this is the size of the bit field plus any padding
bits required

high_bound the high bound of a dimension of an array; in C, the number of
elements

language C for the C language

low_bound the low bound of a dimension of an array; in C, always 0

new_ordinal the ordinal assigned to a type that is being defined

producer string giving the name of the producer of the compiler

source-filename string giving the name of the source file from which this
compilation unit was derived (exactly, with or without a path, as
specified in the compilation command)

type_ref the ordinal of a previously defined type

total_bytes the total size of a struct, union, or array

work-directory string giving the working directory at the time of the compilation
command that produced this compilation unit

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 81

B Expectations Language
Sample statements

COM not applicable

DEF location of the identifier defined by #define

DIM undefined

ENU location of the enumeration member identifier

FUN location of the function name

FUN > undefined

INC line number of the #include, with column number undefined

LAB location of the first character of the label

MEM location of the member identifier, if named, otherwise undefined

NAM location of the typedef identifier

PAR location of the parameter identifier

SRC < location of the first visible character that is not part of a comment

SRC > location of the last visible character that is not part of a comment

STM location of the first visible character of the executable statement

TYP location of the tag if a tag is given (for enum, struct, or union)

TYP > undefined

UND location of the identifier being undefined

VAR location of the variable identifier.

Type ordinal

When a type is first introduced, it is assigned a new type-ordinal, and it is that ordinal
number which is used for later reference in derived types, variables, functions, etc.

The term type-ref is used in the statement syntax to refer to an underlying type from
which a type is derived, e.g.,when const int is introduced, int is its base type. and
similarly for int [] the base type is int. When there is no underlying type, e.g., for a struct,
zero is used as a placeholder in the type_ref field.

Sample statements

Consider the following C source program, with line numbers shown at the start of each
line.

1 /* src001.c */
2
3 #define d000 0
4 #define void
5
6 typedef enum e001 {member001 = 1} type001;

B Expectations Language
Sample statements

82 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

7 typedef enum e002 {member002 = 2} type002;
8
9 struct s
10 {
11 int i001;
12 unsigned u001:5;
13 }
14 v;
15
16
17 static int compute ()
18 {
19 int sum;
20 struct s w [2];
21 {
22 type001 v001 = member001;
23 type002 v002 = member002;
24
25 sum = v001 + v002 + (w [0].i001 = v.i001);
26 }
27 return sum;
28 }
29
30
31 int main (int argc, char * argv [])
32 {
33 return compute ();
34
35 }
36
37 #undef d000

The expectations file generated from this C file is:

COM C 0 0 src001.c
BAS * 0 0 1 1 char
BAS * 0 0 2 4 float
BAS * 0 0 3 8 double
BAS * 0 0 4 16 long double
BAS * 0 0 5 1 signed char
BAS * 0 0 6 4 signed int
BAS * 0 0 7 4 signed long
BAS * 0 0 8 2 signed short
BAS * 0 0 9 1 unsigned char
BAS * 0 0 10 4 unsigned int
BAS * 0 0 11 4 unsigned long
BAS * 0 0 12 2 unsigned short
BAS * 0 0 13 0 void
BAS * 0 0 14 4 int (bit-field)
BAS * 0 0 15 4 long (bit-field)
BAS * 0 0 16 2 short (bit-field)

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 83

B Expectations Language
Sample statements

SRC < 3 16 src001.c
DEF * 3 2 d000 0
DEF * 4 2 void
TYP E 6 14 17 0 e001
ENU * 6 20 1 member001
TYP > 6 35 17 4 e001
NAM * 6 289 17 type001
TYP E 7 14 18 0 e002
ENU * 7 20 2 member002
TYP > 7 35 18 4 e002
NAM * 7 38 18 type002
TYP S 9 8 19 0 s
MEM * 11 9 6 0 i001
BIT * 12 12 10 4 0 5 u001
TYP > 13 2 19 8 s
VAR p 14 3 19 v
TYP F 0 0 20 6
TYP > 0 0 20 0
FUN f 17 12 20 compute
OLD * 0 0
BLO < 18 1
VAR a 19 8 6 sum
TYP A 20 9 21 19
DIM * 0 0 0 2
TYP > 0 0 21 16
VAR a 20 11 21 w
BLO < 21 2
STM * 22 12
VAR A 22 12 17 v001
STM * 23 12
VAR A 23 12 18 v002
STM * 25 3
BLO > 26 2
STM * 27 2
BLO > 28 1
FUN > 0 0
TYP P 0 0 22 1
TYP P 0 0 23 22
TYP F 0 0 24 6
PAR * 0 0 6
PAR * 0 0 23
TYP > 0 0 24 0
FUN F 31 5 24 main
PAR * 31 15 6 argc
PAR * 31 28 23 argv
BLO < 32 1
STM * 33 2
REF F 33 9 compute
BLO > 35 1
FUN > 0 0

B Expectations Language
Sample statements

84 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

UND * 37 2 d000
SRC > 35 1 src001.c

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 85

C PEATS TESTS

C PEATS TESTS

The following is a list of tests supplied with PEATS. Each test is in its own directory,
and is used for compiling and linking. Directories with more than one module are also
used for archiving. See “Steps taken for each kind of run” on page 32 for details on how
the modules in a test directory participate in compiling, linking, and archiving tests.

Table 3-1 Test cases written by ApTest

Directory Focus of test

test001 long variable names

test002 long function names

test003 long label names

test004 long tag names and long member names

test005 long typedef names

test006 many type names

test007 many member names within one type

test008 many #define names

test009 many function names

test010 many parameters within one function

test011 a single statement spanning many source lines

test012 many executable statements on one source line

test013 arrays with many dimensions

test014 many include files

test015 many #line directives

test016 many labels in one function

test017 a structure with many members

test018 a union with many members

test019 a deeply-nested pointer type

test020 a deeply-nested structure type

test021 a deeply-nested union type

test022 deeply-nested code blocks with declarations

test023 deeply-nested single struct definition

test024 construction of a complex type in a parameter list

test025 an enumeration with many assigned values

C PEATS TESTS

86 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

test026 a complex function return type

test027 a define with many parameters

test028 ISO types constructed with “const” and “volatile”

test029 many local variables

test030 many register variables

test031 many local static variables

test032 use of like names in different name spaces

test033 many function parameters designated “register”

test034 many local variables in a nested block

test035 many labels in nested blocks

test036 function pointers

test037 bit fields

test038 many public functions referenced across compilands

test039 five modules with functions that depend on each other

test040 nested structs and unions with anonymous bit fields

test041 incomplete array declarations

test046 large program combining many of the constructs from other test cases

test047 multiple levels of include files

test048 use of an include file with executable statements

test049 use of standard include files

test050 preprocessor #define and #undefine

test051 complex #define macros

test052 #line directives

test053 all of the base types

test054 all storage classes

test055 permuted type specifiers

test056 multiple declarators within a declaration

test057 complex declarators

test058 typedefs

test059 multi-dimensional array types

test060 application of type qualifiers to array types

Table 3-1 Test cases written by ApTest(continued)

Directory Focus of test

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 87

C PEATS TESTS

test061 enumeration constants with complex value assignments

test062 definition of an enum type inside a constant expression

test063 tagged and untagged structs and unions

test064 signed, unsigned, and “plain int” bit fields

test065 alignment and sizing

test066 alignment and sizing of bit fields

test067 type qualifiers

test068 function types and function pointers

test069 old-style parameter lists

test070 referenced and unreferenced public variables

test071 adjustment of array parameters

test072 adjustment of function parameters

test073 equivalence of types differing only in array completions

test074 abstract parameter lists

test075 type casts

test076 scope of enumerated constants

test077 locally declared externs

test078 expressions using the sizeof operator

Table 3-2 Public domain test programs

Directory Focus of test

test042 Fourteen .c files and .h files

test043 One .c file

test 044 One .c file

test.045 Ten .c files and .h files

Table 3-1 Test cases written by ApTest(continued)

Directory Focus of test

C PEATS TESTS

88 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

Table 3-3 Supplemental run-time tests written by ApTest

Directory Focus of test

Alignment tests

testa001 Endian ordering (Big)

testa002 Endian ordering (Little)

testa003 Size of fundamental types

testa004 Alignment of fundamental types

testa005 EABI long double alignment

testa006 EABI aggregates with long doubles

testa007 Array alignment

testa008 Maximum alignment rule

testa009 Internal padding

testa010 Aggregates are a multiple of the object’s alignment

testa011 Maximum alignment rule for bit-fields

testa012 Internal padding for bit fields

testa013 Aggregates w/bit-fields are a multiple of the obejct’s alignment

testa014 Bit-field ranges

testa015 Plain bit-fields behave as unsigned

testa016 Bit-field allocation order

testa017 Bit-field can cross byte but not storage unit boundaries

testa018 Bit-fields may share storage unit with other struct/union members

testa019 Unamed bit-field alignment

testa020 Zero-length unnamed bit-fields

Calling convention tests

testc002 EABI r2 for ELF .sdata2 and sbss2 sections

testc003 EABI r2 can reach all 16-bit offsets in ELF sdata2 and sbss2 sections

testc004 EABI r2 not used in ELF shared objects

testc005 r13 contains _SDA_BASE

testc006 r31 contains environment pointer

testc007 Nonvolatile condition registers

testc008 16-byte alignment of stack

Applied Testing and Technology, Inc. Version 1.0 PEATS Functional Specification 89

C PEATS TESTS

testc009 Stack points to lowest allocated frame

testc010 Stack grows to low addresses

testc011 Back chain points to previous frame

testc012 Condition register setting when using varargs

testc013 LR registers

testc014 Signal handling handling and registers

testc015 EABI 8-byte aligned stack

testc016 First frame points to NULL

testc017 Stack pointer restored prior to return

testc018 Stack pointed updated iwth store word with update calls

testc019 Parameter list area caller allocated

testc020 Saving floating-point registers

testc021 Saving general registers

testc022 Saving condition registers

testc023 Stack has back chain and LR word

testc024 Padding in local variable area

testc025 Parameter list follows header

testc026 Register save area has no padding

testc027 8 general registers for parameters

testc028 8 floating-point registers for parameters

testc029 double parameter in floating-point register

testc030 Simple arguments in general register

testc031 struct, union, double arguments in general register

testc032 Pointers to copies of struct, union, double arguments

testc033 Pointers to original struct, union, double arguments

testc034 Parameters passed on stack

testc035 long long parameter alignment

testc036 long long parameter order

testc037 Simple argument alignment

testc038 Float-point argument alignment

testc039 Argument alignment

Table 3-3 Supplemental run-time tests written by ApTest (continued)

Directory Focus of test

C PEATS TESTS

90 PEATS Functional Specification Version 1.0 Applied Testing and Technology, Inc.

testc040 Argument copying

testc041 Return double

testc042 Return float

testc043 Return word

testc044 Return small struct union

testc045 Return long long

testc046 Return long double struct

testc047 Return undefined structure bits

testc048 Return address buffer

Table 3-3 Supplemental run-time tests written by ApTest (continued)

Directory Focus of test

